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Abstract
In this paper, we propose to utilise diffusion models for data aug-
mentation in speech emotion recognition (SER). In particular,
we present an effective approach to utilise improved denoising
diffusion probabilistic models (IDDPM) to generate synthetic
emotional data. We condition the IDDPM with the textual em-
bedding from bidirectional encoder representations from trans-
formers (BERT) to generate high-quality synthetic emotional
samples in different speakers’ voices1. We implement a series
of experiments and show that better quality synthetic data helps
improve SER performance. We compare results with generative
adversarial networks (GANs) and show that the proposed model
generates better-quality synthetic samples that can considerably
improve the performance of SER when augmented with synthetic
data.
Index Terms: speech emotion recognition, synthetic speech,
generative models, data augmentation.

1. Introduction
Speech emotion recognition (SER) aims at enabling machines to
perform emotion detection using deep neural networks (DNNs)
models [1]. SER has a wide range of applications in customer
centres, healthcare, education, media, and forensics, to name
a few. Various studies have explored different deep learning
(DL) models including deep belief networks (DBN) [2], convo-
lutional neural networks (CNN) [3], and long short-term mem-
ory (LSTM) networks [4] to improve the performance of SER
systems. However, the SER performance is hindered by the un-
availability of larger labelled datasets. Developing high-quality
emotional datasets can be a time-consuming and costly process.

Data augmentation is considered an effective method to gen-
erate synthetic samples to tackle the data scarcity problem in
SER. Various studies (e.g., [5, 6, 7]) in SER have shown the
effectiveness of audio data augmentation techniques including
SpecAugment [8], speed perturbation [9], and noise addition
[10]. However, speech variations like speed perturbations do
not change the semantic content and they may have an effect on
emotional expressions. Another approach is to utilise generative
models including a conditional generative adversarial network
(GAN) [11], Balancing GAN [12], StarGAN [13], and Cycle-
GAN [14] to generate emotional features to augment the SER
system (e. g., [15, 16]). Studies have found that synthetic data
by generative models can help improve the performance of SER
systems. However, vanilla GANs face convergence issues due to
smaller emotional corpora and are unable to produce high-quality
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emotional synthetic features [17, 18]. To address these issues,
we propose to use diffusion models to generate synthetic data to
augment the SER system. In contrast to GANs, diffusion models
provide better training stability and produce high-fidelity results
for audio and graphics [19, 20]. To the best of our knowledge,
this paper is the first to explore diffusion models for SER.

The key contribution of this paper is the use of improved
denoising diffusion probabilistic models (IDDPM) to generate
synthetic data to augment the training of the SER system. In
order to generate high-quality synthetic samples, we condition
the IDDPM with text embedding from bidirectional encoder
representations from transformers (BERT) [21]. We present
a comprehensive analysis by evaluating the SER system in (i)
within the corpus and (ii) cross-corpus settings on 4 publicly
available datasets. We empirically show that synthetic data
generated by the proposed framework considerably improves the
SER results compared to recent studies.

2. Related Work
Various data augmentation techniques are used to improve SER
performance. Speed perturbation [9] is a popular technique that
is widely used in SER to generate augmented data. For exam-
ple, studies [22, 5] use speed perturbation as a data augmenta-
tion method and evaluate it in SER. Based on the results, they
show that data augmentation helps improve SER performance.
SpecAugment [8] is another augmentation technique that was
proposed for automatic speech recognition (ASR). Studies [7, 6]
explore the SpecAugment technique in the SER domain and
show that the data SpecAugment improves the generalisation
and performance of the systems. Recently, the mixup [23] data
augmentation technique is also being explored in SER. Mixup
generates the synthetic sample as a linear combination of the
original samples. Latif et al. [24] use mixup to augment the SER
system in order to achieve robustness. Based on the results, they
found that augmentation helps improve generalisation by gen-
erating diverse training data. Other studies [5, 25] also use data
augmentation to improve the performance of SER by increasing
the training data. However, these studies do not use generative
models to generate synthetic data.

Generative models aim to generate new data points with
some variations by learning the true data distribution of the
training set. GANs are popular generative models due to their
ability to learn and generate data distributions. Different studies
have explored GANs in SER. For instance, Sahu et al. [17]
explored a vanilla GAN and a conditional GAN to generate a
synthetic emotional feature vector from a low-dimensional (2-d)
feature space. They use a support vector machine (SVM) as a
classifier and computed the results on both real and synthetic
data. They found that the vanilla GAN faces convergence issues
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due to the smaller emotional corpus, however, a conditional
GAN could generate better synthetic features that help improve
the SER performance. Recently, the authors in [18] attempted to
augment their GAN with mixup [23] augmentation and achieved
better SER performance. In contrast to these studies, we use the
diffusion model to generate high-quality synthetic samples to
augment the SER system.

3. Proposed Approach
We use improved denoising diffusion probabilistic models (ID-
DPM) to generate emotional data. Figure 1 shows the proposed
model that takes spectrogram conditioned on text embedding to
generate synthetic emotional spectrograms. The details of the
proposed framework are presented next.

Figure 1: Illustration of the forward and reverse diffusion pro-
cess. In the forward phase, we add Gaussian noise on each
timestep until the sample becomes an isotropic Gaussian dis-
tribution. In the reverse phase, we estimate the noise for each
timestep using a neural network and denoise the corrupted sam-
ple.

3.1. Diffusion for Emotional Data Synthesis

Diffusion models are state-of-the-art generative models inspired
by non-equilibrium thermodynamics. They are fundamentally
different from other popular generative models including GANs
and variational auto-encoders (VAEs) [26]. They define the
diffusion process as a Markov chain by slowly adding random
noise to the input data for a total of T times and learn to re-
verse this process by reconstructing the desired data samples
from the noise. Various diffusion model architectures have been
proposed, however, we utilise the improved denoising diffusion
probabilistic models (IDDPM) [27], which is an extended ver-
sion of denoising diffusion probabilistic models (DDPM) [28].
The main motivation for the utilisation of IDDPM is its improved
log-likelihoods and that it requires fewer timesteps to generate
high-fidelity outputs.

Given an emotional data point x0 sampled from a real data
distribution, we add Gaussian noise for T timesteps using a
forward noising process q that provides latent for each timestep.
The sample xT becomes isotropic Gaussian noise for a large
T → ∞. This is highlighted in Figure 1 which shows that an
initially clean Mel-spectrogram (x0) is completely transformed
into Gaussian noise after adding noise for each timestep t. The
noise is according to a schedule of βt and the forward noising

process can be defined as:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (1)

where αt = 1 − βt and ᾱt =
∏t

i=1 αi. We illustrate a single
denoising step in Figure 1 that shows the approximation of noise
at each timestep done by a neural network pθ :

pθ(xt−1|xt) := N (xt−1;µθ(xt, t); Σθ(xt, t)), (2)

where µθ(xt, t) and Σθ(xt, t) are the mean and variance param-
eters respectively for the noisy sample at timestep t.

If we know the exact reverse distribution q(xt−1|xt), we can
sample xt ∼ N (0, I) and generate xo by running the process
in reverse. As explained by Ho et al. [28], a denoising neural
network can be trained to predict xt−1 from xt at timestep t
using the following:

xt−1 = N (xt−1;
1√
αt

(
xt − 1− αt√

1− ᾱt

ϵθ(xt, t)
)
,Σθ(xt, t)).

(3)

Essentially, the network learns to predict the mean and variance
parameters of noise for t − 1 at each t. This noise is then
subtracted from the xt and we obtain xt−1. Ho et al. [28] kept
βt fixed as constants and set Σθ(xt, t) = σ2

t I, and σt is either
set to βt or β̃t =

1−ᾱt−1

1−ᾱt
· βt. We use IDDPM [27] that learns

Σθ(xt, t) and select a cosine-based noise schedule instead of a
fixed βt. This helps reduce the time for sampling by utilising a
strided sampling schedule. The sampling is updated after every
[T/S] step, which reduces the sampling time from T to S. The
new sampling schedule for generation is {τ1, . . . , τS}, where
τ1 < τ2 < · · · < τS ∈ [1, T ] and S < T . We generate the
synthetic samples by training the model for both forward and
reverse processes. The training process and model configuration
are explained next.

3.2. Model Configuration and Training

In our IDDPM model, we select a commonly used modified
version of the UNet [29] for the denoising process. In the mod-
ified UNet, a self-attention layer between the bottleneck and
CNN layers is used. For our experiments, we observed better
results in terms of audio synthesis by using 1-dimensional CNN
layers instead of the more commonly used 2-dimensional CNN
for image generation. This also helps reduce the memory foot-
print of the model and speed-up training. To ensure that each
synthetic sample had a consistent speaker emotion and does
not contain nonsensical gibberish as speech, we conditioned
our denoising network on a representation of target samples.
We passed the corresponding text with emotion and speaker in-
formation of each target sample to a pre-trained bidirectional
encoder representations from transformers (BERT) [21] model
to get the representation and extrapolated it simply by using
fully connected layers with a linear sigmoid unit (SilU) activa-
tion followed by a self-attention layer. This representation was
concatenated with the input at each timestep t. This modified
input is passed through a block of 8 1-dimensional CNN layers
with 1536 filters, each. Each layer has a SiLU activation and we
provide residual connections between consecutive layers which
we call res-blocks. A self-attention layer is provided afterwards
and we add 3 more res-blocks. A final 1-d CNN layer is added
to bring the number of filters back to 80.

For our training procedure, we use a cosine-based noise
schedule and choose 4000 diffusion steps to learn the variance
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along with the mean of noise for each timestep t. We trained the
model on an Nvidia Rtx 3090 GPU with a batch size of 64 for
about 120,000 steps. During inference, we control the emotion
and speaker’s voice in the output samples using the condition
vector.

4. Experimental Setting
4.1. Datasets Details

We selected four publicly available popular emotional datasets
for SER evaluations. The details of these datasets are presented
below.

IEMOCAP: The interactive emotional dyadic motion cap-
ture (IEMOCAP) [30] is a multimodal dataset containing English
dyadic conversations. The dataset spans over 10 sessions and
two speakers for each session. The annotation is performed by
3-4 assessors in 10 emotions. For consistency with previous
studies [31, 18, 17], we use four emotions (angry, sad, happy,
and neutral) for our experiments. The total samples for these
selected emotions are 5531.

MSP-IMPROV: For cross-corpus evaluation, we select the
“acted corpus of dyadic interactions to study emotion perception”
(MSP-IMPROV) [32]. Similar to IEMOCAP, this corpus also
contains recordings of English dyadic conversations. It consists
of six sessions, with utterances from two speakers per session.
In total, there are 7,798 utterances with four emotions: neutral,
sad, angry, and happy. All samples from the corpus are used for
our experiments.

CREMA-D: The crowd-sourced emotional multimodal ac-
tors dataset (CREMA-D) [33] is a data set of 7,442 clips from 91
actors. We select this corpus for cross-corpus evaluations across
datasets having different distribution and recording scenarios.
The clips in this corpus are from 48 male and 43 female actors
between the ages of 20 and 74 coming from a variety of races
and different ethnicities. In our experiments, we only use four
emotions for our experiments.

RAVDESS: The Ryerson audio-visual database of emo-
tional speech and song (RAVDESS) [34] is another popular mul-
timodal database. This corpus is gender balanced consisting of
24 professional actors, vocalising lexically-matched statements
in a neutral North American accent. Similar to CREMA-D, we
select this data for cross-corpus evaluations. We select four
emotions from this data similar to other datasets used in this
paper.

4.2. Pre-processing and Input Representation

A popular method in SER is to represent speech as Mel-
spectrograms. Likewise, we compute the Mel-spectrograms
using a short-time Fourier transform of size 1024, 256 hop-size,
and a window size of 1024. We select the frequency range of
0-8 kHz and extract 80 Mel frequency bands scaled linearly in
the range of [−1, 1]. To cater for the varying audio length, we
use a segment-based approach for training the model as used
in [3]. We use the segment length of three seconds. The larger
utterances are segmented and the smaller ones are zero-padded.
This results in a Mel-spectrogram of shape (80 x 256) for each
segment.

5. Experiments and Evaluations
In this section, we present the results of our diffusion model and
our SER.

5.1. Synthetic Data

We generate synthetic data using IDDPM for different emotions.
In Figure 2, we plot synthetic Mel-spectrograms for each emo-
tion and compare them with the corresponding ground truth
samples. To evaluate the quality of our synthetic audios, we
use a pre-trained HiFi-GAN [35], a vocoder that can synthesise
high-fidelity audio waves from Mel-spectrograms. We choose a
sampling rate of 22.5 kHz as HiFi-GAN is trained on this sam-
pling rate. We calculate the mean absolute difference (MAD)

Figure 2: Comparing ground truth samples of IEMOCAP data
with synthetic samples generated using our proposed model.

between the ground truth samples and our synthesised samples
for IEMOCAP and the results are presented in Table 1. This
shows that our synthetic data have very small variations from
the real data for all emotions. Our synthetic samples for happy
and neutral have slightly high MAD, however, we are achiving
better score in contrast to the Bao et. al. [31]. These variations
in synthetic data help the speech emotion classifier learn from
diverse information and improve the SER performance that we
highlight in the next experiments.

Table 1: Mean of absolute difference for different emotions.

Emotion Mean of Absolute Difference
Happy 0.0141

Sad 0.0096
Angry 0.0097
Neutral 0.0143
Total 0.0476

Bao et. al. [31] (λcls = 2) 0.0490

5.2. Speech Emotion Classification

In this section, we perform SER to empirically evaluate the qual-
ity of synthetic data. We augment the training data and present
the results for within-corpus and cross-corpus settings. We im-
plement a convolutional neural network (CNN) and bidirectional
LSTM (CNN-BLSTM) based classifier for SER. We use three
1-D CNN layers with rectified linear layers as activations to learn
high-level representations from input Mel-spectrograms. These
representations are then passed to BLSTM layers to learn the
emotional context. The final output from the BLSTM layer is
fed to a fully connected layer that gives an output vector equal
to the number of emotions classes. We use batch normalisation
to speed up training and add a dropout of 0.1 between the CNN
layers and 0.2 between the LSTM layers. We train each model
for 100 epochs with a learning rate of 10−5 and a batch size of
64. We select all these parameters using the validation set. To
have a fair comparison with previous studies [18, 31, 17], we
use a leave-one-speaker-out scheme and results are presented by
the field’s standard measure unweighted average recall.

5.2.1. Within-Corpus

In this experiment, we present SER results using the real, syn-
thetic, and real+synthetic data in Table 2. Results for IEMOCAP
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Figure 3: Confusion Matrix Results for IEMOCAP data.

data are compared with recent studies [17, 31, 18]. In [17],
the authors use conditional GANs to augment the ground truth
training data with synthetic samples to improve speech emotion
classification. In [31], the authors utilise a CycleGAN-based
model for the augmentation of real data. In contrast to these
studies, we achieve considerable improvement for synthetic and
real+synthetic data. In [18], the authors introduce a framework
that utilises mixup augmentation while training a GAN-based
network. They were able to improve SER performance by aug-
menting the training data. Our results are better compared to
Latif et al., [18] without augmentation (see Table 2). We achieve
further improvements in UAR (61.38 ± 2.04%) when mixup
augmentation is applied to the training data similar to [18].

In Figure 3, we present the confusion matrices and compare
the results with [31] for synthetic and real+synthetic data cases.
We find improved results for both cases. Most importantly,
our results for synthetic data are consistent for all the classes
compared to the [31], where they achieve high accuracy only on
sad emotion and low on happy and neutral classes. This shows
that our proposed model is capturing emotions and generating
better emotional samples for all the classes.

Table 2: Results (UAR (%)) on IEMOCAP for corpus setting.

Studies Real Syn Real+Syn Improvement
Sahu et al. [17] 59.42 34.09 60.29 0.87
Bao et al. [31] 59.48±0.71 46.59±0.75 60.37±0.70 0.89
Latif et al. [18] 60.51±0.57 45.75±0.81 61.05±0.68 0.54

Ours 58.62±2.11 57.96±1.54 61.22±1.85 2.6

5.2.2. Cross-corpus Evaluation

In cross-corpus SER, we utilise the MSP-IMPROV corpus as
target data. We perform experiments using real, synthetic, and
real+synthetic data. To be consistent with studies [31, 18, 17]
compared in this section, we randomly select 30 % of the samples
from MSP-IMPROV as the development set for hyper-parameter
tuning and the selection and the remaining 70 % as the test set.
Results are presented in Table 3. We compare the performance

Table 3: Comparing results for cross-corpus evaluation.

Studies Real Syn. Real+Syn.
Sahu et al. [17] 45.14 33.96 45.40
Bao et al. [31] 45.58 ± 0.40 41.58 ± 1.29 46.52±0.43
Latif et al. [18] 46.0±0.57 42.15 ± 1.12 46.60 ±0.45
Our 45.81±0.65 43.53± 1.20 48.22±0.51
Our (+mixup) 46.51±0.65 44.31± 1.10 48.58±0.51

with different studies [18, 17, 31]. All these studies [17, 31, 18]
use GAN-based architectures to generate the synthetic features to
augment the training of SER. We are achieving improved results
compared to these studies for synthetic and real+synthetic data.

However, we are achieving comparable results with [18] for
real data. In [18], the authors also utilise mixup augmentation
to augment training data. We achieve better results with the
utilisation of mixup augmentation in our approach (see Table 3).

Most of the previous studies [18, 31, 17] performed cross-
corpus evaluations on IEMOCAP and MSP-IMPROV. Both of
these datasets are recorded in similar recording situations and
have almost similar distributions. In this work, we extend our
experiments to other datasets that have different distributions.
We use CREMA-D and RAVDESS for these experiments. We
trained our model on IEMOCAP synthetic data and evaluations
are performed on 50 % of CREMA-D and RAVDESS. The re-
maining 50 % samples of these corpora are used as a presentation
for model adaptation. Results are presented in Figure 4, which
shows that synthetic data contains emotional information that
helps the classifier to identify emotions across different datasets
even when recorded in different situations.

Figure 4: Cross-Corpus results with varying percentages of
target data in the training set.

6. Conclusions and Future Work

In this work, we have addressed a major challenge of data
scarcity in speech emotion recognition (SER) by proposing to
use improved denoising diffusion probabilistic models (IDDPM)
for synthetic data generation. We conditioned the IDDPM using
the textual embedding from Bidirectional Encoder Representa-
tions to generate high-quality synthetic data. We used synthetic
data to augment SER and the evaluations are performed both in
within-corpus and cross-corpus settings using four publicly avail-
able datasets. In contrast to the recent studies on GAN-based
synthetic data generation, our approach considerably helps im-
prove SER performance with synthetic data utilisation for train-
ing data augmentation. In future works, we aim to design an
extended version of the proposed framework for addressing the
data scarcity issues in cross-lingual SER.
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