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Abstract

This paper proposes autoregressive modeling of the joint multi-
talker automatic speech recognition (ASR) and timestamp pre-
diction. Autoregressive modeling of multi-talker ASR is a
simple and promising approach. However, it does not pre-
dict utterance timestamp information despite its being impor-
tant in practice. To address this problem, our key idea is to
extend autoregressive-modeling-based multi-talker ASR to pre-
dict quantized timestamp tokens representing the start and end
time of an utterance. Our method estimates transcription and
utterance-level timestamp tokens of multiple speakers one af-
ter another. This enables joint modeling of multi-talker ASR
and timestamps prediction without changing the simple autore-
gressive modeling of the conventional multi-talker ASR. Ex-
perimental results show that our method outperforms the ASR
performance of conventional autoregressive multi-talker ASR
without timestamp prediction and achieves promising times-
tamp prediction accuracy.

Index Terms: multi-talker automatic speech recognition,
timestamp prediction, autoregressive modeling

1. Introduction

Our natural conversations and meetings often include speech
where several people speak simultaneously. The task of multi-
talker automatic speech recognition (ASR) is to transcribe each
utterance of this overlapped speech into text. Several studies
have tackled the issue of how to accurately transcribe over-
lapped speech [1-13]. One of the most popular approaches uses
serial pipeline processing that combines speech separation and
ASR [1-7]. This approach first separates the overlapped speech
into non-overlapped speech using speech separation methods
such as deep clustering [1, 14] or Transformer-based methods
with permutation invariant training (PIT) [12, 15] and then ap-
plies typical single-talker ASR [16-20] that is trained to tran-
scribe non-overlapped speech. Although powerful speech sep-
aration methods are available, one of their weaknesses is that
they cannot handle the dependency among utterances of each
speaker, because the output separated speech is independently
processed by single-talker ASR, which leads to poor ASR re-
sults, including duplicate hypotheses.

In contrast, a recent promising approach for end-to-end
multi-talker ASR is autoregressive modeling with serialized
output training (SOT) [11,21,22]. Instead of having indepen-
dent multiple output layers that output transcriptions of each
speaker [1-7], it generates the transcription of multiple speak-
ers recursively one after another with a single output layer. This
enables simple and natural modeling of the dependency among
the outputs for multiple speakers; that is, the transcription of the
next speaker is predicted given the transcription of the previous

speaker’s speech, just like in our natural conversations, with the
same architecture as simple single-talker ASR. In addition, this
not only avoids the maximum speaker number constraints but
also helps avoid the generation of duplicate hypotheses. Specifi-
cally, it outputs serialized transcriptions of multiple speakers by
introducing a special symbol representing the speaker change
and concatenating the transcriptions using the special symbol.

However, a limitation is that their prediction does not in-
clude utterance timestamp information. In other words, al-
though we understand who speaks what, we cannot figure out
when the utterance is spoken, despite its being important in
practice. For example, the overlap ratio indicates how active
a meeting is and it becomes easier to follow the flow of the dis-
cussions with timestamps when reading the record. To address
this problem, our key idea is to extend autoregressive-modeling-
based multi-talker ASR to predict quantized timestamp tokens
representing the start and end time of an utterance. The idea to
predict quantized timestamp tokens is first explored in single-
talker ASR [20]. In [20], they directly estimate the quantized
timestamp tokens representing the start time of the utterance,
the transcription, and the quantized timestamp token represent-
ing the end time of the utterance one after another. This ap-
proach is promising because it enables the timestamp prediction
with single-talker ASR without changing the simple autoregres-
sive modeling of the conventional single-talker ASR that does
not predict timestamp information. On the other hand, to the
best of our acknowledge, this approach is not verified in multi-
talker overlapped ASR settings.

In this paper, we propose joint autoregressive modeling of
multi-talker ASR and timestamps prediction. The proposed
method outputs serialized transcriptions of multiple speakers
and their utterance-level timestamps one after another by in-
troducing speaker change symbols and quantized timestamp to-
kens. Since the task to estimate quantized timestamp tokens
is solved as a classification problem, our method solves both
multi-talker ASR and timestamps prediction with a single out-
put layer; that is, the same output layer is used to estimate tran-
scription and quantized timestamps, which enables the same
simple autoregressive modeling as the conventional multi-talker
ASR without timestamp prediction. The proposed method esti-
mates both start and end timestamp tokens of each speaker be-
fore ASR results to learn their dependencies. We conducted ex-
periments to evaluate the ASR performance and timestamp pre-
diction performance with the Corpus of Spontaneous Japanese
(CSJ) [23]. We experimentally show that the joint model-
ing of transcription and timestamps improve ASR performance
and that training to transcribe overlapped speeches with more
than one speaker improves ASR performance and timestamp
prediction accuracy even under a typical single-talker setting.
Moreover, we compare our method with neural speaker diariza-
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tion [24], which estimates the frame-level speech activation of
each speaker to evaluate the prediction accuracy of the times-
tamps, and show that the proposed method achieves better re-
sults.

2. Conventional methods
2.1. Single-talker ASR with autoregressive modeling

We denote the acoustic feature of the input speech and its tex-
tual token as X = (x1,...,27) and W = (w1,...,wnN),
respectively, where z; € R” denotes the tth frame of the fea-
ture, F' denotes its dimension, 7" denotes the length of acoustic
features, w, € V denotes the nth textual token, V' denotes the
vocabrary set, and N denotes the length of the token. Typical
single-talker ASR with autoregressive modeling estimates gen-
eration probability of W given X as follows:

N
P(W|X;Osr) = H P(wn|win—1,X;0Ostr), (1)

n=1

where ®st denotes the parameters of the single-talker ASR
model and w1.,—1 = (w1, ..., wn—1). The parameter Ogr is
optimized with the following cross-entropy function:

Lst = —log P(W|X; ©sr). @

When estimating timestamps in single-talker ASR [20], all
timestamps are quantized and additional timestamp tokens are
added to the ASR result; the start time token is predicted be-
fore transcription, and the end time token is predicted after it.
In [20], all timestamps are quantized to the nearest 20 ms, and
the output hypothesis becomes (< ts >, w1, ..., Wy, < te >),
where < ts > and < t. > denote the quantized start time token
and end time token, respectively.

2.2. Multi-talker ASR with autoregressive modeling

We denote utterance-level textual tokens of multiple speakers
as WHE = (W' ... W), where K denotes the number
of speakers in the overlapped speech, W* = (wf,...,wk,)
denotes the kth speaker’s textual token, and N* denotes the
length of the token. Since there are permutation ambiguities in
the order of & when predicting W*, the first-in, first-out ap-
proach [10, 11] is adopted in SOT. In this approach, W% is
sorted by their utterance start times. Moreover, to recognize
multiple utterances with a single output layer, WX is serial-
ized into a single token sequence with special symbol [sep] rep-
resenting speaker change. The serialized token S € {V U O}
is given as

S:(w%,..

K—1 K
c o WyK-1,[S€P, WY, -

1 2 2
-, W1, [Sep]7w17 s, W2, [Sep]a

3

where [eos] denotes the end of a sentence, O = {[sep], [eos]},
and we assume that W' ¥ is sorted in order of utterance start
times for simplicity.

Multi-talker ASR with autoregressive modeling estimates
generation probability of S given acoustic feature X in the
same manner as single-talker ASR as

L wye, [eos]),

|S|
P(S|X;0Our) = HP(SL\SM—hX; Owur), 4)
1=1
where s; denotes the [th token of S, s1.4-1 = (s1,...,81-1),

|S| denotes the length of .S, and @1 denotes the parameter of
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the multi-talker ASR model. The parameter @yt is optimized
with the following cross-entropy function:

Lyt = —log P(S|X; ®Omr). &)

3. Proposed method
3.1. Strategy

As discussed in Section 1, since our natural conversations or
meetings usually contain overlapped speech, joint modeling of
multi-talker ASR and timestamp prediction is useful in many
situations, such as for creating easy-to-read records of con-
versations and measuring the activity of meetings. Moreover,
the joint modeling enables ASR to consider which segment in-
cludes the target utterance speech by predicting the start and end
timestamps, which is expected to improve ASR performance,
especially under overlapped settings.

Figure 1 shows an overview of the proposed method. In our
autoregressive modeling of joint multi-talker ASR and times-
tamps prediction, we predict the joint generation probability
of multiple transcriptions WX and timestamps from single-
channel overlapped speech. We use a unified autoregressive
model with a single output layer to jointly handle the ASR task
and timestamp prediction task.

3.2. Formulation

We denote the start time token and the end time token of multi-
ple speakers as T % = (<t} >, ..., < t& >) and T}
(< th >,..., < t& >), respectively, where < t*¥ >€ 7 and
< t¥ >€ T denote the kth speaker’s start time token and end
time token, respectively, and 7 denotes the quantized time to-
ken label set. The quantized time token is obtained by rounding
the continuous timestamp values to the nearest quantized value
every () seconds.

To efficiently model the joint generation probability of
WK Tl and THF, we serialize them into a single label
sequence as SOT [11]. In our preliminary experiments, plac-
ing the start time token and end time token before transcription
achieved slightly better ASR performance compared to the one
described in Section 2.1. Thus, we serialize the labels and ob-
tain the single label sequence S € {V UO U T} as

S=(<t> <t , W1, [sep],
2
[sep],

- Wn2,
WK [eos]).

1
>,’U]1,...
<t2 > <t >, wi, ..

K K K
< > <S> wr, L (6)

The joint generation probability of WHE  T1E and 11K
given multi-talker overlapped speech X is obtained as

PWHE T T X; ) = P(3]X;©)
|S|
= || P(581.1-1,X;©),
=1
@)
where §, denotes the Ith token of S, §1.,_1 = (81,...,81-1),

|5’ | denotes the length of S, and © denotes the parameter of the
model in the proposed method.
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Figure 1: Overview of the proposed method.

3.3. Modeling

We use a Transformer-based ASR model [19,25]. The joint
generation probability is obtained as follows:

H = TransformerEnc(X; Oenc), ®)
P(5]81.1-1, X ; ©) = TransformerDec(H, 81,;—1; Odec),
)

where TransformerEnc(+) is a Transformer encoder that con-
sists of a pre-net, a positional encoding layer, and multiple
multi-head self-attention blocks; On. denotes its parameters,
TransformerDec(+) is a Transformer decoder that consists of
an embedding layer, a positional encoding layer, and multiple-
multi-head self-attention and encoder-decoder attention blocks;
and Oq4.c denotes its parameters. We describe the detailed ar-
chitecture of the model in Section 4.2. The parameter ® =
{Bcnc; Bacc} is optimized with the cross-entropy function that
is defined as

L = —logP(S|X;®). (10

4. Experiment
4.1. Dataset

We evaluated the proposed method by conducting single-talker
and multi-talker ASR tasks with timestamp prediction. We used
the CSJ [23] for our experiments. First, we divided CSJ into
training, validation, and test data. Training data consists of
1,388 speakers, and its size is 522 h. Validation data consists
of 10 speakers, and its size is 1.3 h, and test data consists of 10
speakers, and its size is 1.9 h. Since the CSJ is a dataset for
single-talker ASR, we created two-speaker and three-speaker
simulated mixtures by mixing the utterances of different speak-
ers for multi-talker ASR experiments. When mixing the au-
dio signals, the original volume of each utterance was kept un-
changed, resulting in an average signal-to-interference ratio of
about 0 dB. As for the delay applied to each utterance, the delay
values were randomly chosen under the constraints as in [11].
First, the start times of individual utterances differed by 0.5 s or
longer. Second, every utterance in each mixed audio sample had
at least one speaker-overlapped region with other utterances.
The average overlap rate was about 35 %. Figure 2 shows the
histograms of speech duration. We used 80 log mel-scale fil-
terbank coefficients as acoustic features, which were extracted
using a 20-ms-long Hann window with a 10-ms-long shift. For
ASR, this paper used characters as textual tokens. We set () as
0.5, which means continuous timestamps are rounded every 0.5
.
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Figure 2: Histogram of speech duration of (a) single-speaker
dataset, (b) simulated two-speaker dataset, and (c) simulated
three-speaker dataset.

4.2. Implementation

We used a Transformer-based ASR model [19, 25] in this pa-
per. The acoustic feature was first passed to layers composed
of two 1 X 1 convolutions with 1 X 1 strides, two max pooling
with a stride of 2, two 3 x 3 depthwise convolutions with 1 X 1
strides, and two long-short term memory layers with outputs of
256 dimensions. Then, we stacked ten-layer Transformer en-
coder blocks, where the number of heads in the multi-head at-
tention was set to 4, the dimensions of the output continuous
representations were set to 256, and the dimensions of the inner
output in the position-wise feed-forward networks were set to
1,024. For decoder layers, we stacked two-layer Transformer
decoder blocks, where the settings were the same as for the en-
coder blocks. For the activation function, we used Swish [26].

4.3. Settings

We compared the following methods (listed in Table 1): conven-
tional single-talker ASR with timestamp prediction [20], con-
ventional multi-talker ASR without timestamp prediction [11],
and the proposed multi-talker ASR with timestamp predic-
tion. Moreover, to compare the direct timestamp prediction
adopted in the proposed method with frame-level time estima-
tion adopted in end-to-end neural diarization (EEND) of the



Table 1: Evaluation results

N“ri?lbtzrs t"g;t‘;esft‘e“ Methods ASR  Timestamps | CER (%) DER (%) SCA (%)
1 Conventional single-talker ASR [20] v v 8.31 0.23 100
Conventional multi-talker ASR [11] v 7.67 - 100

EEND-EDA [24] v - 0.16 99.2

Proposed method w/o transcription v - 0.01 99.9

Proposed method v v 7.33 0.07 99.9

2 Conventional multi-talker ASR [11] v 8.92 - 97.8
EEND-EDA [24] v - 0.68 81.5

Proposed method w/o transcription v - 0.22 97.9

Proposed method v v 8.56 0.19 98.8

3 Conventional multi-talker ASR [11] v 12.95 - 92.8
EEND-EDA [24] v - 4.69 72.1

Proposed method w/o transcription v - 0.36 93.8

Proposed method v v 12.28 0.60 92.0

overlapped speech [24,27-31], we also compared timestamp
prediction with autoregressive modeling (the proposed method
w/o transcription) and EEND with encoder-decoder based at-
tractors (EEND-EDA) [24]. In the proposed method without
transcription, the model was trained to estimate the quantized
timestamp tokens T.5'K and T and the speaker change to-
ken [sep] recursively. EEND-EDA was trained following [24].
The other models were optimized by using the RAdam [32] al-
gorithm with a minibatch size of 32. We set the learning rate of
the algorithm to 0.0001. The training steps were stopped if the
loss on the validation set did not decrease for ten epochs in suc-
cession. We applied label smoothing with the smoothing weight
of 0.1 [33]. For testing, we used a beam search algorithm whose
beam size was set to 20.

We used the character error rate (CER), diarization error
rate (DER), and speaker count accuracy (SCA) to evaluate the
total performance of the methods. Note that we used DER to
evaluate prediction accuracy of the timestamps. Since our in-
terest in this paper is not the estimation of the speaker identity,
we created simulated mixtures so that the new speaker speaks
after the speaker change in our dataset. In other words, the
dataset consisted of one utterance per speaker, which enabled
us to calculate the prediction accuracy of the timestamps with
DER. When comparing hypothesized boundaries to references,
we used a tolerance of 500 ms. SCA was calculated as the ra-
tio of the number of test samples for which each method cor-
rectly counted the speaker to the total number of test samples.
In multi-talker overlapped ASR settings, we compared hypothe-
ses with references while considering the order of utterances.
When calculating CER, we only evaluated textual tokens ex-
cluding the special token O and the time-stamp token 7.

4.4. Results

Table 1 shows the evaluation results for each method. Note
that since we trained the models using single-speaker, two-
speaker, and three-speakers datasets except for conventional
single-talker ASR, we used the same parameters when evalu-
ating the test dataset of different numbers of speakers. First,
the proposed method achieves the best CER performance of
all under all settings. Interestingly, when there is only one
speaker in the test dataset (typical single-talker setting), the pro-
posed method improves CER by 0.98% compared to conven-
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tional single-talker ASR. This suggests that training with more
than one speaker is effective even when the model is used for
single-talker ASR. Moreover, compared to conventional multi-
talker ASR without timestamp prediction, the proposed method
improves CER by 0.34%, 0.36%, and 0.67% when the number
of speakers is one, two, and three. This is probably because
the predicted timestamps help make the ambiguous overlapped
speech boundaries clear, which leads to more accurate ASR
when the number of speakers in overlapped speech is large.

Second, with respect to DER and SCA, the proposed
method without transcription achieves better results compared
to frame-level estimation of EEND-EDA, which suggests that
autoregressive modeling of direct timestamp prediction is a
promising approach to estimate start and end time of an ut-
terance especially when the number of speakers in overlapped
speech is large. In the typical single-talker setting, the proposed
method improves DER by 0.16 % compared to conventional
single-talker ASR. This suggests that training with the multi-
talker dataset improves timestamp prediction performance as
well as ASR performance.

5. Conclusions

In this paper, we proposed autoregressive modeling of joint
multi-talker ASR and timestamps prediction under the multi-
talker ASR setting. The proposed method outputs serialized
transcriptions of multiple speakers and their quantized times-
tamp tokens one after another with a single layer, which enables
simple and natural modeling of multi-talker ASR and timestamp
prediction without changing the simple autoregressive model-
ing of the conventional multi-talker ASR. Experimental results
show that the proposed method outperforms the conventional
single-talker ASR and the conventional multi-talker ASR. This
indicates that predicted timestamps are helpful when estimat-
ing transcription and that training with overlapped speech from
more than one speaker improves typical single-talker ASR per-
formance and timestamp prediction performance. Moreover,
DER and SCA of the proposed method outperformed EEND-
EDA, which indicates that the autoregressive modeling of direct
timestamp prediction is a promising approach when estimating
the start and end time of an utterance.
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