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Abstract

Finite element models (FEM) of the tongue have facilitated
speech studies through analysis of internal muscle forces indi-
rectly derived from imaging data. In this work, we build a uni-
form hexahedral FEM of a tongue atlas constructed from mag-
netic resonance imaging data of a healthy population. The FEM
is driven by inverse internal tongue tissue kinematics of speak-
ers temporally aligned and deformed into the same atlas space,
while performing the speech task “a souk” allowing muscle ac-
tivation predictions. This work aims to investigate the common-
alities in tongue motor strategies in the articulation of “a souk”
predicted by the inverse tongue atlas model. Our findings re-
port variability among five speakers for estimated muscle acti-
vations with a similarity index using a dynamic time warp func-
tion. Two speakers show similarity index > 0.9 and two others
< 0.7 with respect to a reference speaker for most tongue mus-
cles. The relative motion tracking error of the model is less than
2% which is promising for speech study applications.
Index Terms: speech production, biomechanical modeling,
tongue atlas

1. Introduction
The tongue is a highly deformable organ that plays a major role
in speech production via interdigitated muscles activated with
neuro-anatomical signals locally rather than as a whole unit
[1]. In previous studies, the internal tongue deformation dur-
ing specific speech utterances has been effectively captured us-
ing state-of-the-art medical imaging modalities to study speech
synthesis [2]. However, there remains a gap in understanding
how the biomechanical properties of the tongue musculature
tie to speech synthesis using even simple motions such as the
tongue’s protrusion or retraction [3]. Determining the relation-
ship between the neuro-muscular activations and articulatory
gestures in these speech utterances has been a long-standing is-
sue in speech research areas [3–6], particularly those related to
inter-subject variability of tongue anatomy and functionality of
tongue muscles.

The aforementioned problem in speech research may be
solved by investigating the range of motor functions of the
tongue muscles in producing the same sounds with different
speakers. Direct measurement strategies such as electromyog-
raphy (EMG) for studying tongue muscle function are invasive
and noisy [7]. On the other hand, medical imaging techniques
such as magnetic resonance imaging (MRI), ultrasound, and
computed tomography (CT) can provide highly detailed mor-
phological information of oropharyngeal structures for study-
ing deformations during sound production, chewing, or swal-
lowing. However, they do not directly measure internal mus-
cular forces. Finite element (FE) modeling and simulation of

oropharyngeal structures has proved to be an effective strategy
to quantify aspects of speech production, such as internal tissue
forces and muscle activation patterns, which cannot be directly
derived from medical imaging [8]. The modeling approaches
for this purpose can be broadly classified into two types: 1) for-
ward modeling, measuring tongue deformation from muscle ac-
tivations and 2) inverse modeling, estimating muscle activation
patterns from internal tongue deformation [9].

Recently, as related developments, Woo et al. [10] devel-
oped a 4D atlas of tongue motion using both cine and tagged
MRI while uttering the words “a souk” and “a geese.” To estab-
lish a pattern of variability in a given population uttering these
words, Xing et al. [11] developed a statistical approach using
correlation among different internal muscles. Muscle activa-
tion correlation patterns for subjects were estimated using the
tissue deformation fields obtained from tagged MRI of individ-
ual subjects morphed into the atlas space. However, this ap-
proach did not account for the nonlinear hyperelastic properties
of the tongue tissue, which are often modeled in state-of-the-
art FE models [4, 8]. Based on motion data in subject spaces
from tagged MRI, Harandi et al. [7] developed subject-specific
FE models for four subjects using the Artisynth toolkit [12]
that predicted activations using a quadratic inverse solver [13].
However, the predictions were suboptimal [4] due to significant
relative tracking error and the lack of internal muscle fiber di-
rections of each speaker, which are difficult to acquire without
invasive techniques.

To overcome these shortcomings, in this work, we propose
a data-driven approach of inverse FE modeling to measure vari-
ability in muscle functions among different subjects by simu-
lating subject-specific motion data [11] morphed into the sta-
tistical atlas geometry of healthy individuals. The FE model
is built by registering the muscle fiber directions of a cadaver
tongue [14] in the same atlas space. Specifically, we provide a
quantitative analysis to show similarities in the motor strategies
employed while speaking the same word “a souk” among five
American English speakers using inverse tongue atlas model-
ing. Our proposed inverse atlas model can predict muscle func-
tions for several subjects, thus saving the complex and time-
consuming process of generating a subject-specific model for
each speaker. Moreover, the model provides morphological
structures that can be used to register bone geometry, and the
predictions only depend on the motion deformation fields of
each subject in the atlas space. We report the findings based on
the estimated muscle activation patterns, including: 1) variation
in muscle excitation among the five speakers for the same vowel
and consonant sounds, and 2) function of the tongue protruder
and retractor muscles for aforementioned sounds.
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Figure 1: a) Sagittal and coronal perspective view of the atlas tongue FEM. The attachment of the tongue to the jaw and hyoid bones
are also shown in red and blue respectively b) Muscle bundles defined in the hexahedral mesh. Top row: central muscles GG, VERT
and TRANS divided into 5 distinct segments (a: posterior to e: anterior) in mid-sagittal view. Bottom row shows the muscle segments
HG, MH, SL, IL and GH. A midcoronal view (bottom center) is also included for HG and MH.

2. Materials and Methods
2.1. Data Acquisition and Atlas Construction

The cine and tagged MRI data were acquired using a 12-channel
head and a four-channel neck coil on a Siemens 3.0T Tim-Trio
MRI scanner. The in-plane image resolution was 1.875mm ×
1.875mm, and the slice thickness was 6 mm. The following
sequence parameters were used: a repetition time (TR) of 36
ms, an echo time (TE) of 1.47 ms, a flip angle of 6, and a turbo
factor of 11.

To obtain the displacement vectors of tissue points inside
the tongue volume of a particular subject over time in their
corresponding subject space, we utilized a phase vector in-
compressible registration algorithm (PVIRA) [11]. Specifically,
PVIRA reconstructed a dense, 3D, and incompressible motion
field at each time frame by tracking the corresponding harmonic
phase data from tagged MR volumes. To construct the atlas, we
applied a registration strategy that deformed the displacement
vectors of the subjects speaking “a souk” and “a geese” into the
average atlas space. The average atlas space was then deter-
mined by spatially aligning all healthy subjects. The phrases “a
souk” and “a geese” as target utterances are of phonetic im-
portance in speech studies, as it primarily involves superior-
posterior and anterior-posterior tongue motion, minimal lateral
motion, and limited jaw and lip movement. This particular
study uses the motion data of two male and three female na-
tive English speakers in the age range of 20-45 years uttering “a
souk”.

2.2. Tongue Atlas Model Design

2.2.1. Voxelized FEM generation

The multi-subject atlas is modeled as a voxelized volumetric
mesh, comprising 6,166 nodes and 5,070 uniform hexahedral
elements generated using the work by Lloyd et al. [12] to create
embedded FEM in Artisynth. The algorithm generates a cuboid
or a bounding FEM around any polygonal surface mesh. The
number of elements of this bounding FEM that are more than
50% inside the surface mesh are used to generate the voxelized
FEM as shown in Figure 1.a). For the purpose of visualization,
a surface mesh generated from the atlas segmentation mask is
added to the model.

2.2.2. Tongue Muscles definition

The following muscles are modeled in the tongue FEM, as
shown in Figure 1.b): genioglossus (GG), hyoglossus (HG), sty-
loglossus (STY), geniohyoid (GH), and myohyoid (MH), which
are the extrinsic muscles (connected to the bone), and transverse

(TRANS), verticalis (VERT), superior longitudinal (SL), infe-
rior longitudinal (IL), which are intrinsic muscles (located in-
side the tongue). The genioglossus (GG), transverse (TRANS),
and vertical (VERT) muscle bundles are further divided into five
smaller functionally relevant segments (a: posterior to e: ante-
rior), to accommodate more degrees of freedom [5, 15]. Using
the same algorithm in Section 2.2.1 to generate a bounding FEM
around each segmented muscle mask from structural MRI [11],
the hexahedral elements in the total FEM volume are allocated
to different muscle bundles. Next, we define the resting fiber
directions inside each element. However, obtaining accurate
information on fiber directions from structural MRI is challeng-
ing. A viable approach is to register the muscle fibers defined
in state-of-the-art FE models [4], which have fiber orientations
based on a cadaver tongue [8].

In order to obtain the muscle fiber directions for the corre-
sponding elements for each muscle bundle, a two-step approach
of mesh registration and deformation is carried out. The reg-
istration is carried out via Iterative Closest Point Mesh Cor-
respondence with Gaussian weight function parameters. The
maximum weight was set to 1, and the standard deviation was
set to 0.01. The dynamic registration controller used is de-
scribed in detail by Khallaghi et al. [16]. The surface mesh
(assigned as the source) is taken from a model that contains the
aforementioned muscle fiber directions and a voxelized FEM is
generated for that mesh in the same way as mentioned in Sec-
tion 2.2.1. This voxelized FEM deforms around the atlas sur-
face mesh, which serves as the target. The deformed voxelized
FEM is then used to perform a non-linear geometry transfor-
mation of the muscle fibers for each muscle segment in the se-
lected subject-specific model. The geometry transformation in
Artisynth developed by Lloyd et al. [17] is carried out using a
piece-wise smooth deformation field from the deformed FEM.
The transformer that generates an affine transformation which
is applied to the muscle fibers is described in Section 3.4 of the
Artisynth toolkit [12]. The deformed and transformed muscle
fiber directions are used to create a Delaunay interpolation ma-
trix that calculates the muscle fiber direction at rest for each
hex element of the Atlas FEM for every corresponding muscle
bundle [17].

2.2.3. Material Properties

The voxelized Tongue Atlas FEM is modeled using a non-linear
hyperelastic material similar to the models by Harandi et al. [4].
The FE model uses a fifth-order Mooney-Rivlin Material, and
we refer the reader to Buchaillard et al.’s work [8] for the defi-
nition of the material parameters. We replicate the strain energy
modifications done by Harandi et al. [7] in their FE model and
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define the muscle bundle material as a Blemker muscle [18].
Further details on how the parameters are chosen can be found
in the work by Harandi et al. [19].

2.3. Data-driven Inverse simulation

Using Stavness et al.’s inverse tracking controller [13], we pre-
dict muscle activation patterns of five speakers saying “a souk.”
The controller utilizes the deformed internal tissue kinematics
of each speaker in the atlas space, with linearly interpolated dis-
placement vectors from the motion field on selected FEM nodes
serving as input. The simulation of articulatory trajectory relies
on muscle redundancy (many-to-one mapping) and imposed
constraints. The estimated muscle activations can either reflect
realistic patterns or highlight limitations in the model based on
existing anatomical knowledge.

2.3.1. Target Nodes selection

Selection of the target nodes affects the simulations and we ad-
dress it as follows: a) we select regions with high velocity den-
sities, b) nodes are selected along the muscles that are expected
to get activated the most. For this study, we select four clusters
of five nodes each, extending from the tip to the posterior end
of the central muscles in the tongue FEM.

2.3.2. Inverse tracking controller

The inverse tracking controller solves for normalized activation
values a for muscle exciter terms by minimizing the loss term
as given by

argmin
a

(wm||v −Hma||2 + α

2
aT a), (1)

where wm||v−Hma||2 is the velocity tracking error term of the
20 target points, and Hm is a matrix summarizing the biome-
chanical characteristics of the system, such as mass, joint con-
straints, and force-activation properties of the muscles. α

2
aT a

is the l2-norm regularization term to reduce muscle redundancy
and distribute the predictions among the exciters equally. The
weight of the motion target component wM was set to 1.1, and
the regularization coefficient α was set to 0.01 to achieve the
lowest possible tracking error, while maintaining model stabil-
ity.

2.3.3. Error Analysis

We evaluate the model from a data-driven perspective, by as-
sessing its ability to accurately reproduce the actual tongue tis-
sue displacement motion observed in tagged MRI. To measure
the performance of the inverse model, we calculate the Root
Relative Mean Square Error (RRMSE) and the Relative Abso-
lute error (RAE) for each time frame of the simulation as given
by

RRMSE =

√√√√√√√√

3n∑
i=1

(xi − x̂i)2

3n∑
i=1

x̂2
i

, RAE =

√√√√√√√√

3n∑
i=1

|xi − x̂i|
3n∑
i=1

|xi − x̄|
,

(2)
where xi represents the actual displacement of each target node,
while x̂i is the target displacement in any of the three directions
of tongue movement, namely forward, upwards, or lateral. The
total number of target nodes is denoted by n, and the sum of
errors is calculated for 3n directions (forward, upward, and lat-
eral). The mean of actual displacements of all nodes in each

time frame is represented by x̄. We report both the maximum
and mean error values across the time frames of motion simula-
tion.

2.4. Similarity Measurement

The input tagged MRI data in the atlas space for each sub-
ject were initially recorded at a rate of 26 frames per second,
with each frame lasting 38.46ms. Of note, for a smooth sim-
ulation, this data is interpolated across 50 time frames in the
inverse model. Although all speakers perform the speech task
“a souk” in the same duration, there are slight variations in the
time frames of the utterances for /@/, /s/, /u/, and /k/ for each
speaker, and these are identified visually by a speech scientist
from the sagittal view of cine MRI [7]. To incorporate this vari-
ation into our quantitative analysis of the similarities in muscle
motor strategies for the five speakers using the inverse tongue
atlas model, we apply a Dynamic Time Warping (DTW) algo-
rithm [20], which is commonly employed for speech recogni-
tion. The DTW function calculates the minimum sum of Eu-
clidean distance d, between estimated muscle activation curves
for two subjects for any given muscle exciter (see Figure 2).

As the value of d increases, the difference between the two
curves also increases. The Euclidean sum dij is calculated for
each exciter i across all subjects j, resulting in the matrix Dp×m

as given by

Dp×m =



d11 ... d1m
d21 ... d2m
. ... .

dp1 .. dpm


 , (3)

where p is the number of exciters, and m is the number of sub-
jects. The similarity index matrix Sp×m is defined by its ele-
ments sij , which are calculated through normalization, as fol-
lows:

sij = 1− |dij − dmin|
|dmax − dmin|

, (4)

where dmax and dmin are the maximum and minimum values
of dij , respectively. The value of sij ranges from 0 to 1, with 0
indicating no similarity between signals and 1 indicating identi-
cal signals. For our evaluation, we use speaker S1 as the control,
meaning that each element in the first column of the matrix S is
set to 1.
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Figure 2: Dynamic Time Warping to calculate dij for muscle
HG between S1 and S2

3. Results
3.1. Tongue Muscles activation for “a souk”

This section interprets the muscle activation patterns. The
middle and anterior fibers of the genioglossus (GGM/GGA)
lower the dorsum of the tongue, causing an overall backward
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motion [21]. Geniohyoid (GH) and myohyoid (MH) are floor
muscles that assist in tongue elevation and protrusion [21].
Additionally, it is known that extrinsic muscles styloglossus
(STY) and hyoglossus (HG) aid in backward/upward and back-
ward/downward tongue motion, respectively. Intrinsic muscles
superior-longitudinal (SL) and inferior-longitudinal (IL) both
aid in tongue retraction and also elevate/lower the tongue-tip,
respectively [21]. The estimated muscle activations are plausi-
ble indicators, not actual values, revealing potential muscle ac-
tivities aligned with predictions and identifying similarities in
motor strategies for “a souk.”

3.1.1. Articulation for /@/ to /s/
GGM is significantly activated (except for S4) during /@/, while
GGA shows slight activation. As the tongue elevates and pushes
forward for /s/, distinct muscle activations occur. VERT seg-
ments are mostly inactive during /@/, except for minor activation
in VERTe. However, VERTa-b gradually increases activation
during /s/. TRANSe is active throughout /@/, while TRANS(a-
c) gradually activate during /s/. HG and SL muscles exhibit
minimal activation initially to aid in slight retraction and tip el-
evation for /@/.

3.1.2. Transition from /s/ to /u/
While uttering /s/ and transitioning to the high vowel /u/, the
tongue holds a constrained pose for a few milliseconds and pro-
ceeds to move forward. As such, it is expected that the tongue
protrudor muscles will get increasingly activated while there
will be a decline in activation of tongue retractor muscles. Thus,
it makes complete sense to observe a slow rise in activation
of TRANSa-b and MH and slow decline in activation of STY
and GH in the predicted pattern. TRANSa and VERTb exhibit
peak activation, while GGPa shows the lowest activation near
the production of the high vowel /u/. The tongue retractor mus-
cles, such as GGM, GGA, VERTe, and HG exhibit near-zero
activation levels.
3.1.3. Transition from /u/ to /k/
Lastly, while uttering /k/, the tongue tip slowly moves down-
ward, but remains relatively close to the position it maintains
during the /u/ sound. Hence, the only difference observed from
the previous transition period is a further steady decline in mus-
cles that elevate the tongue tip and push the tongue forward. The
observations are consistent with these predictions, as observed
with a slight decrease in activation of TRANSa-b. In all the
speakers, there is also a slight increase in activation towards the
end of /k/ with some assistance from tongue retractor muscles,
including TRANSe and GGPa.

3.2. Tracking Error
Table 1 shows both the maximum and average RRMSE and
RAE values (expressed in percentage) for five speakers over the
time period of 1s simulated at 50 fps.

Table 1: Error Analysis

S1 S2 S3 S4 S5

RAE% Mean 0.381 0.873 0.672 0.575 0.535
Max 0.567 1.521 1.020 1.079 0.805

RRMSE% Mean 0.044 0.103 0.077 0.069 0.063
Max 0.068 0.180 0.111 0.131 0.098

3.3. Similarity Index using Dynamic Time Warp
The values of the similarity index matrix Sm×p (see Section
2.4) using the DTW function are calculated for each speaker

(with respect to S1) for 21 muscle exciters and represented as
a heatmap as in Figure 3. The similarity index between S1 and
S2 is very high (over 0.9) for seven exciters, moderately high
(between 0.7-0.9) for eight exciters, and very low (below 0.2)
for two exciters. Between S1 and S3, ten exciters have a simi-
larity index >0.9. For S4, it is <0.5 for seven exciters and >0.9
only for five exciters indicating low similarity with S1. Lastly,
for S5, it is > 0.9 for eight exciters, between 0.7-0.9 for five
exciters, and <0.5 for five exciters.
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Figure 3: Similarity Index between S1 and the rest of speakers
based on DTW. Darker green indicates a higher level of simi-
larity.

4. Discussion and Conclusion
This study used the inverse atlas tongue to estimate muscle acti-
vation patterns for five native English speakers saying the word
“a souk.” The results showed that tongue retractor muscles were
observed to be most activated during the utterance of /@/, and
the tongue protrudor muscles were relatively more active during
the utterance of /s/ and peaked around the high vowel /u/ with
steady decline around /k/ for most speakers. We defined a Sim-
ilarity Index using a DTW function to quantify the similarities
in the estimated muscle activation patterns of the five speakers.
These values indicate there are common motor strategies that
may be explored by analyzing these plausible muscle activa-
tions. However, there are a few limitations in this work, includ-
ing 1) the muscle fiber orientations are assumed to be the same
in the multi-subject atlas for all five speakers, 2) the FE model
has limited degrees of freedom, and 3) the inverse tracking con-
troller can track only a definite number of nodes accurately. In-
stead of an L2-norm regularizer as described in Section 2.3.2,
other regularization terms such as L1-norm may also be used
to investigate the effect of distributing muscle activations in an
underdetermined system. In future work, we will analyze motor
strategies in the production of “a souk” and “a geese” based on
observed muscle activation patterns and acoustic formant anal-
ysis, expanding the study to include more speaker datasets.
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