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Abstract
Automatic speech recognition (ASR) systems become increas-
ingly efficient thanks to new advances in neural network train-
ing like self-supervised learning. However, they are known
to be unfair toward certain groups, for instance, people speak-
ing with an accent. In this work, we use the French Common
Voice dataset to quantify the biases of a pre-trained wav2vec 2.0
model toward several demographic groups. By fine-tuning the
pre-trained model on a variety of fixed-size, carefully crafted
training sets, we demonstrate the importance of speaker diver-
sity. We also run an in-depth analysis of the Common Voice
corpus and identify important shortcomings that should be taken
into account by users of this dataset.
Index Terms: automatic speech recognition, self-supervised
learning, common voice, fine-tuning, biases

1. Introduction
Recent years have seen great advances in automatic speech
processing, thanks to the generalization of new techniques
for building speech representations using neural networks,
including self-supervised learning (SSL) [1, 2, 3, 4], self-
training (PT) [5], or a combination of both [6, 7, 8, 9]. SSL
and PT are used to leverage huge amounts of unannotated data
to build powerful speech representations that can be used to
tackle various downstream tasks like automatic speech recog-
nition (ASR) or speaker identification. To this end, models
pre-trained with a SSL approach are then fine-tuned on a tar-
get domain. Although it has been shown that speech recog-
nition models can be trained effectively in a fully-supervised
manner [10, 11], to this day self-supervision remains popular
for building powerful ASR systems [12].

There is a long history of bias in speech recognition [13,
14]. Despite their state-of-the-art performance, there is grow-
ing evidence that even the most recent models are not robust
to domain shifts [15, 16] or data bias [17, 18]. Examples
of domain shifts include acoustic conditions [19], vocabulary
and grammar [16], and speech style (read speech, spontaneous
speech) [15, 20], whereas models can be biased towards spe-
cific demographic attributes, like gender [18, 21], age [22], ac-
cent [18, 14, 23], or prosody (speech rate) [17].

Various methods for dealing with domain shifts have been
referenced in the literature, like using data augmentation [24],
adding adapters to the backbone model [22], exploiting both
spectral and SSL features [25], or increasing the amount of pre-
training data [15, 20].

In this work, we show how pre-trained models’ perfor-
mance is biased toward certain demographics, and investigate
whether fine-tuning on carefully designed training sets can
counterbalance these biases. Our work is closely related to [21],

where they pre-train gender-specific models to investigate gen-
der bias. In [15, 20], authors pre-train models using various
datasets and data sizes but do not investigate the role of fine-
tuning, nor do they break down results by demographics. Fair-
ness in ASR has been investigated [26, 27], however, these
works do not analyze the impact of biased fine-tuning sets.
In [18], authors fine-tune SSL models on different domains and
evaluate gender and accent biases, but they do not control for
the size of the datasets. In this work, we investigate the impact
of fine-tuning a SSL model on a single domain, controlling for
data size and demographic biases. We also provide a critical
analysis of the French Common Voice dataset. To the best of
our knowledge, this is the first work investigating in-depth the
impact of the fine-tuning step on the demographic biases of a
wav2vec 2.0 model.

2. Common Voice dataset
Common Voice [28] is a massive crowd-sourced multilingual
corpus of read speech. It is maintained by Mozilla and is
freely available online1. We use the French subset of the Com-
mon Voice 12.0 corpus, which is the latest available version at
the time of writing. It consists of more than 1,000 hours of
speech (≈ 760,000 utterances) spoken by more than 17,000 dif-
ferent speakers. Anyone can contribute to expanding the dataset
by recording its voice or validating other users’ recordings. In-
terested readers can refer to the article [28] for more details on
the dataset creation process.
Utterances are partitioned into three splits (validated, invali-
dated, and other) depending on their validation status. The vali-
dated split itself contains three disjoint subsets (train, dev, test),
each with its unique speakers and sentences. Statistics for each
split are reported in Table 1.

Table 1: Statistics for the different splits of the dataset. Dura-
tion is hours:minutes.

Split # Speakers # Utterances Duration
validated 16140 666754 915:42
→ train 6756 499535 718:38
→ dev 3140 16104 25:46
→ test 4774 16104 26:14
invalidated 9365 58418 91:56
other 845 34255 47:25

We can see that more than 92,000 utterances are yet to
be validated or have been deemed invalid by the community.
While a lot of these rejects are justified (because of inaudible

1commonvoice.mozilla.org/datasets
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audio, wrong sentence, multiple voices), manual inspections
of the data show that some samples were wrongfully rejected.
Conversely, some samples are deemed valid when they are not.
We explore the influence of samples’ quality on ASR perfor-
mance in the following sections.

2.1. Demographic bias

One important feature of Common Voice is that users can self-
report their demographic information on their profile; this in-
formation is then shipped alongside the dataset. Demographic
data comprises age category, gender, and accent. We report the
distributions of each of these attributes in Figure 1.
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Figure 1: Distribution of each demographic attribute for the
different data splits. Contributors may opt out of sharing demo-
graphic data; hence the proportions not summing to 1.

We can clearly see the data imbalances for each attribute. Tak-
ing the train set as an example, we observe that 83% of all la-
beled utterances (62% of the total) come from male speakers,
whereas only 15% (11% of the total) come from female speak-
ers. The discrepancy is even higher for the accent attribute, and
we observe strong differences between age classes. Although
these can be partially explained by the French population pyra-
mid, the gender gap is more difficult to justify and could moti-
vate further investigations.

We expect that these data biases will have repercussions on
models fine-tuned on this trainset (or on random subsets of it).
We test this hypothesis in the following sections.

2.2. Speaker bias

There are no limits on a user’s contributions to the dataset ;
hence, it is expected that some users will record more sentences
than others. To get a better sense of whether this is the case,
we plot the number of utterances by speaker (Figure 2, left). As
we can see, the dev and test sets are balanced, with no more
than 8 utterances per speaker. On the other hand, the train set is
heavily unbalanced, with some speakers having several orders
of magnitude more utterances than others. To better visualize
this distribution, we plot the cumulative distribution of utter-
ances on the right panel of Figure 2 (note the logarithmic axis).
We observe that 7% of all utterances were spoken by a single
user, while the top ten speakers represent 25% of all utterances.
One-half and three-quarters of all utterances are spoken by only
1% and 10% of all the speakers, respectively. The training set is
therefore clearly biased toward certain speakers. This could be
a concern when taking sub-samples of this set, and indeed we
find that random samples of size 50,000 contain 5,275 speakers

on average, a 22% decrease. We explore this problem further in
the following sections.
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Figure 2: Left: Distribution of utterances between speakers for
train/dev/test splits. Right: Cumulative distribution of utter-
ances for the train split. Speaker rank is the rank in the list of
speakers sorted by decreasing number of utterances.

3. Training sets
In order to answer the questions raised in section 2, we build
various training sets using different strategies for sub-sampling
the original train set. To ensure our comparisons are fair, each
training set contains exactly 50,000 utterances (≈ 71± 3 hours
of audio data). Choosing such a reduced data size has several
benefits. It makes the training faster and consumes less energy.
It also allows us to create fully biased train sets (for instance,
100% female speech, see section 3.1) even for low-resource de-
mographic subgroups.
We begin by creating reference train sets, which are simply ran-
dom sub-samples of the train split. These sets will provide us
with baseline performance. Next, we create a ”bad quality” set
using invalidated samples, and two ”high quality” sets contain-
ing only samples with no downvotes or samples with the most
upvotes, respectively. These sets will be useful to determine the
relevance of the samples’ quality.

3.1. Demographic train sets

To measure the impact of demographic biases, we build a series
of train sets whose characteristics are summarized in Table 2.
For each of the three demographic attributes, we create sets vol-
untarily biased towards certain values of that attribute. When-
ever possible, we try to affect the same number of speakers to
the different train sets related to the same attribute (see for in-
stance how ”male only”, ”female only” and ”mixed genders”
all have 598 speakers). We do so in order to eliminate a possi-
ble confusion factor. Finally, we also create a ”high diversity”
set which is optimal in terms of demographic distribution: each
attribute has its values equally represented in the train set.

3.2. Varying the number of speakers

We suspect that the number of speakers in a training set has a
strong influence on the final recognition performance. To test
this hypothesis independently of the data size, we create several
sets of size 50,000 with 22, 10, 100, 1,000, and 6,7563 speakers.

2We use all the data from the top speaker (32,504) and complete
with the second top speaker.

3The train split contains 6,756 unique speakers
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Table 2: Description of the content of the demographic train
sets, along with the number of speakers. †This train set contains
repeated utterances to compensate for a lack of data.

Trainset Description Speakers

Reference A random subsample
of the train split ≈ 5,275

Female only 100% female 598
Male only 100% male 598
Mixed genders 50% female, 50% male 598
Youngs only 25% teens, 75% twenties 1,303
Middle-age only 50% thirties, 50% fourties 1,280

Seniors only 60% fifties, 30% sixties,
10% seventies+ 510

Mixed ages 10% seventies+, 15% for
each other age 1,285

Native only 100% ”French of France” 432
Accented only 100% other accents† 432

Mixed accents 50% native,
50% accented speech 432

High diversity Equal distribution among
attributes 1,079

We also want to test whether it is more important to include
more samples or to diversify the speakers. To do so, we cre-
ate two additional sets, Small and Medium, with 6,756 speakers
each, and respectively one and three utterances per speaker.

4. Experiments
4.1. Data preparation

We keep the audio files as they are, simply converting them
from 48 kHz MP3 to 16 kHz WAV format. We also filter out
the few audio files longer than 12 s for efficiency purposes.
Regarding the text labels, we do extensive cleaning in order to
obtain the most faithful transcriptions possible. First, we con-
vert symbols like α and $ to their written forms. Then we
normalize non-Latin Unicode characters into their ASCII form
while taking special care of keeping French-accented charac-
ters. Finally, we filter out all the remaining special characters
and punctuation. While not perfect, we believe this procedure
is a good heuristic for cleaning the transcriptions and validated
it empirically by listening to corner cases.

4.2. Model

We use the Wav2Vec 2.0 model [2] for all our experiments ;
specifically, we use the LB-7K-large model from the LeBench-
mark [29] initiative, which was pre-trained on 7,739 hours of
French audio. Hyperparameters and architecture are identical
to the ones first introduced in [2]. Note that we use the large
architecture variant, which presents greater capacity (317 mil-
lion parameters). We use the LB-7K variant of the models since
previous work [30, 29] has shown that for this task, models pre-
trained using the greater quantity of audio performed best.

The pre-trained Wav2Vec 2.0 model acts as a speech en-
coder, which is fine-tuned for the ASR task together with an
additional feed-forward network. This head network consists of
three linear layers with 1,024 neurons. Each linear layer is fol-
lowed by batch normalization and a leaky ReLU [31] activation
function. We use dropout with p = 0.15 between each linear
layer. At last, a final linear layer projects the output into token
space, and log-softmax is applied to obtain probabilities of each

token. We use 42 tokens, which represent individual characters.

4.3. Training

We use the SpeechBrain [32] toolkit for all our experiments.
All our models are fine-tuned during 50 epochs using the CTC
loss. We decided to freeze the convolutional layers of the trans-
former during fine-tuning since preliminary experiments taught
us that this speeds up training by 15% with little to no impact
on performances. Adam [33] and Adadelta [34] optimizers with
learning rates 10−4 and 1.0 are used to update the weights of
the Wav2Vec 2.0 model and the additional top layers respec-
tively. Learning rates are reduced at each epoch in which the
validation loss does not improve.
During training, we apply on-the-fly data augmentation us-
ing the Speechbrain time-domain approximation of the
SpecAugment [35] algorithm: it disrupts audio speed, and ran-
domly drops chunks of audio and frequency bands. We disable
audio speed modification since we find it to destabilize training
while providing little or no performance improvement.

For fine-tuning we use several different training sets, which
were formed by sampling audio data following various proto-
cols (varying speaker diversity, demographics, speech quality,
etc). We detail the formation of these training sets in section 3.
We use the official dev set (validation set) for early stopping;
this set is composed of 26 hours of audio, see Table 1.

Each model is trained on a single V100 GPU. Fine-tuning a
model for 50 epochs on 70 h of audio takes ≈ 44 h of compute.

4.4. Evaluation

We evaluate our trained models on the official test set, which
stays identical for all the experiments; this set is composed of 26
hours of audio, see Table 1. We use the Word Error Rate (WER)
as our test metric; lower is better. Note that we do not use any
language model besides our end-to-end model.

5. Results
5.1. Does the quality of the samples matter?

We evaluate our reference models on the test set and obtain a
WER of 13.7± 0.1. We compare this result with our two ”high
quality” models, which score 13.7 and 13.9 respectively. We
deduce that the number of upvotes or downvotes of validated
samples barely matters. On the other hand, our ”bad quality”
model trained using invalidated samples scores 16.7, a signifi-
cant drop in performance. However, it is quite noteworthy that a
model fine-tuned on samples that were deemed unusable is still
able to attain a reasonable ASR performance. This suggests that
the invalidated split still contains a lot of usable audio, there-
fore the rejection process of Common Voice could be made less
strict, which would contribute to increasing the dataset size.

5.2. Can we reduce bias toward certain demographic
groups?

For each model trained on the different train sets described in
Table 2, we evaluate its performance on the test set and break
down results by demographic attributes (see Table 3). Surpris-
ingly, we observe that models trained on biased train sets per-
form no better than the reference on the subgroup they are sup-
posed to target. For instance, the model trained on the ”female
only” set scores 16.9 on the female test subset, whereas the ref-
erence model scores 16.3. This trend holds true for all the sub-
groups for our analysis.
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Table 3: Results of models trained on demographic-biased datasets. WER on the full test set is reported in the column test. We also
report the mean WER across demographic attributes. †In this row we report the mean WER across our reference models. The best
results in each column are shown in bold.

Train set test female male youngs middle-aged seniors native accented mean
reference † 13.7 16.3 14.3 16.1 13.7 13.4 12.6 17.4 14.8
female only 14.4 16.9 15.3 16.7 14.8 14.9 13.4 18.5 15.8
male only 14.1 17.7 14.7 17.1 14.5 13.4 13.0 19.1 15.6
mixed genders 14.0 17.0 14.6 16.4 14.4 13.5 13.0 18.6 15.4
youngs only 13.7 16.3 14.4 16.0 13.8 14.2 12.7 17.5 15.0
middle-aged only 13.9 17.3 14.7 16.9 14.5 13.5 12.9 19.0 15.5
seniors only 14.6 18.5 15.4 17.8 14.8 14.5 13.8 19.2 16.3
mixed ages 13.9 17.2 14.8 16.6 14.3 14.4 13.2 18.5 15.6
native only 14.3 17.4 15.1 17.5 13.9 14.2 12.8 19.5 15.8
accented only 14.9 17.8 15.2 17.1 14.5 15.0 14.0 17.6 15.9
mixed accents 14.2 17.3 14.9 16.5 14.5 14.5 13.4 18.0 15.6
high diversity set 13.8 16.1 14.3 16.0 13.6 13.9 12.8 16.9 14.8

Overall, there are persistent biases toward some demo-
graphic subgroups: male speech is better recognized than fe-
male speech, young people’s speech is badly recognized com-
pared to the other age categories, and native speech is far better
recognized than accented speech. We believe that these biases
are rooted in the underlying pre-trained model; indeed, LB-7K-
large [29] has been pre-trained on a dataset that contains almost
no accented data and is heavily biased toward male speech4.

Finally, we observe that even our ”high diversity” model
does not help to decrease subgroups biases. Although it seems
to perform better than the reference on some subgroups, we find
that these improvements are not statistically significant.

5.3. Influence of the number of speakers
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Figure 3: WER as a function of the number of speakers. Each
point represents a different train set. Note that all train sets are
of the same size (50,000 utterances) except Small (6,756) and
Medium (19,918).

We evaluate the models fine-tuned on the train sets de-
scribed in section 3.2 which have varying numbers of speak-
ers. Results are shown in Figure 3, blue curve. We can see that
the number of speakers (hence, the diversification of timbres,
recording conditions, etc) in the training set has a clear impact
on the WER. The higher the number of speakers, the lower the

4See [29], Table 1. Note that although data from VoxPopuli [36]
is not gender-annotated, it comes from the European Parliament which
used to consist of a majority of men.

WER. When fine-tuning the model on a dataset containing more
speakers than the reference, it obtains a test WER of 13.4, beat-
ing the score of the reference.

In an effort to gather even more speakers, we split the dev
set (90-10 split) and use the largest part to augment our training
set, increasing the number of different speakers to 9,500. We
obtain a WER of 13.3 with a model trained on this set, which is
consistent with our previous findings. Moreover, models trained
on these sets obtain lower WER scores than the reference for
each demographic subgroup, see Table 4. We conclude that re-
searchers looking for the fairest fine-tuning dataset should focus
on maximizing the number of speakers rather than maximizing
demographic diversity.

Finally, models trained on a large number of speakers
(6,756) but on smaller train sets have performance on par with
models trained on more data but with a small number of speak-
ers (see Figure 3). This highlights the importance of prioritizing
speaker diversity over dataset size when collecting audio data.

Table 4: Results of models trained on a larger number of speak-
ers. We report the mean WER across demographic attributes in
the column mean.

Trainset Speakers test mean
Reference 5,324 13.7 14.8
All spks from train 6,756 13.4 14.4
train + dev 9,500 13.3 14.3

6. Conclusion
There is still a long way to go to obtain more fair speech recog-
nition models. Initiatives like the Common Voice corpus are
a first step toward the collection of big and diverse speech
datasets. Even though Common Voice has important shortcom-
ings, it is still useful to build efficient ASR models. We demon-
strate how speaker diversity can be more important than demo-
graphic diversity, and therefore encourage researchers and the
general public to give their voices in a collective effort to further
expand the dataset. In future work, we plan to expand our anal-
ysis using biased pre-trained models and explore the influence
of prosodic attributes (e.g. speech rate) on speech recognition.
We also project to dive deeper into the differences between male
and female speech and test for instance the impact of the pitch.
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