
Parameter-Efficient Low-Resource Dialogue State Tracking by Prompt Tuning

Mingyu Derek Ma1, Jiun-Yu Kao2, Shuyang Gao§, Arpit Gupta2,
Di Jin2, Tagyoung Chung2, Nanyun Peng1,2

1University of California, Los Angeles 2Amazon Alexa AI
{ma, violetpeng}@cs.ucla.edu,

{jiunyk, guparpit, djinamzn, tagyoung}@amazon.com, shuyangg@gmail.com

Abstract

Dialogue state tracking (DST) is an important step in di-
alogue management to keep track of users’ beliefs. Existing
works fine-tune all language model (LM) parameters to tackle
the DST task, which requires significant data and computing re-
sources for training and hosting. The cost grows exponentially
in the real-world deployment where dozens of fine-tuned LM
are used for different domains and tasks. To reduce parameter
size and better utilize cross-task shared information, we propose
to use soft prompt token embeddings to learn task properties.
Without tuning LM parameters, our method drastically reduces
the number of parameters needed to less than 0.5% of prior
works while achieving better low-resource DST performance.
Index Terms: dialogue state tracking, prompt tuning

1. Introduction
Dialogue state tracking (DST) that extracts structured conversa-
tion progress in a list of slot-value pairs from unstructured dia-
logue utterances is an essential component of a dialogue system
[1]. Unlike classification-based models that pick the slot value
from given candidate [2, 3], recent works formulate DST as a
conditional generation task [4, 5], where the concatenation of
dialogue history and a slot-specific prompt are fed to generative
models and the text generation output are decoded to predicted
slot values [6, 7]. This formulation enjoys the benefit of gen-
eralizability to unseen domains and slot types beyond a defined
dialogue ontology [8, 9].

General prompting methods use a textual prompt to provide
task information to the LM [10, 11]. Prior works have variations
that update different parameter combinations such as both LM
and prompt token embeddings [12, 13, 14, 15], only the token
embeddings of the LM [16], or only the prompt token embed-
dings [17, 18, 19].

While there are some existing prompt-based approaches for
DST with different designs of prompts such as using slot name
[20, 21, 22, 23], slot description [24], slot type [25], possible
values [25], priming examples [26] and/or slot-specific question
[4, 27, 28, 29, 8, 30] in prompt sentences, they all fine-tune
the entire LM along with the prompt tokens for a new domain,
which requires a significant amount of training time, system
resources, and annotated data [31, 32]. The computing and
data resource-hungry issues are more severe in the real-world
deployment where LMs tuned for different domains and tasks
need to be trained and hosted, and a typical dialogue system
has to serve dozens of such LMs [33, 34, 35]. This leads to a
high cost of the development and service of dialogue systems

§Work done while at Amazon.

and constrains offline deployment. In addition, limited data is
available for a new domain or task.

We propose a parameter-efficient and data-efficient DST
model for low-resource settings, which only needs to update
0.08% of parameters compared with the previous best model,
by keeping LM parameters frozen and introducing soft prompt
tokens to represent task properties of different slots. Figure 1
gives an overview of our model. The only prior work we are
aware of that only updates prompt token embeddings and thus
parameter-efficient is [36], but it focuses on continual domain
adaptation and with a significant amount of training data.

Our design introduces three techniques that are generaliz-
able to other generative-based information extraction models.
1) Task-specific parameters: task prompt tokens are intro-
duced to specifically learn domain, slot and slot type informa-
tion so that the model behaves according to the task; word-
mapping prompt tokens enable us to obtain task knowledge
contained in natural language instruction and optimize human-
created prompts with continuous embedding space. 2) Task
metadata in objective: we introduce the reiteration technique
in the target sequence in order to include explicit task signals
in the text generation objective. 3) Distinguishing segments:
segment embeddings help the model identify the prompt seg-
ment, dialogue speakers, and question partition. Our proposed
method enables much more efficient dialogue system deploy-
ment as only one LM needs to be hosted and inference for dif-
ferent domains could be realized by feeding domain-specific
prompt token embeddings into the transformer stack.

Experiments on MultiWOZ 2.0 show that our method
achieves better performance on low-resource DST with orders
of magnitude fewer parameters. We further conduct ablation
studies, error analysis, and examine the semantic information
shown in the prompt tokens. We observe that our model is
more specialized in predicting categorical slot values, is more
conservative for slots with free output space and introduces
more hallucination errors for categorical slots.

2. Method
We introduce task definition (Section 2.1), overall framework
(Section 2.2) and soft prompt designs (Section 2.3).

2.1. Task definition

The goal is to construct a belief state with ∣S∣ pairs of slot and
value at a certain turn in a multi-turn conversation. All the turns
up to the query turn are dialogue history, and slot-specific infor-
mation (i.e. name, description, value candidates, question and
type of the slot) is provided. There are 5 slot types, i.e. CATE-
GORICAL, DAY, NUMBER, OPEN and TIME. Questions are from
[28], slot descriptions are from MultiWOZ 2.2 dataset [37], and

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

4653 10.21437/Interspeech.2023-2238

<domain_restaurant>xk
domain is restaurant, slot is price range (price
budget for the restaurant), type is categorical
(expensive or cheap or moderate or don't care).

[sys] how expensive …
[usr] a cheap one is the
best!

Q: what is the price range of the restaurant the user prefers?

A: domain is restaurant, slot is price range, type is categorical. answer is cheapToken
Emb.

aardvark
…
…
zyzzyva

Domain
Prompt

Emb.

Slot
Prompt

Emb.

Type
Prompt

Emb.

Prefix
Prompt

Emb.
Question PE

<slot_pricerange>xk

<type_categorical>xk

sequence emb.

Segment
Emb.

segment emb.

...
Question

Prompt Emb.

...
Token
Emb.

...
Prefix

Prompt Emb.

...
Type

Prompt Emb.

...
Domain

Prompt Emb.

...
Slot

Prompt Emb.

...
Segment

Emb.

<domain_restaurant> x k

<slot_pricerange> x k

<type_categorical> x k
domain is restaurant, slot is price range
(price budget for the restaurant), type

is categorical (expensive or cheap).

[sys] how expensive … [usr]
a cheap one is the best!

Q: what is the price range of the
restaurant the user prefers?

Sequence embeddings
Segment embeddings Decoder stack+

0…1…2…3…4
…5…6…

A: domain is restaurant, slot is
price range, type is categorical.

answer is cheap
Reiteration Answer phrase

Predicted slot value:
(restaurant, price range, cheap)

Figure 1: Model design. The snow icon indicates non-trainable parameters. Absolute positional embeddings are added together with
segment embeddings and sequence embeddings, we omit it for simplicity in the illustration.

value candidates are from dialogue ontology.

2.2. Generative seq2seq framework

We use a decoder-only pre-trained language model (PLM) GPT-
2 [38] as the backbone to provide language and commonsense
knowledge, rather than an encoder-decoder model because of
its superior performance [8]. To get a belief state at a certain
turn, we create ∣S∣ data instances to predict the slot value for
each slot. Figure 1 demonstrates the design and a sample query.
Input sequence. We construct the input sequence by concate-
nating the following segments: 1) Task prompt tokens for do-
main, slot and type, each has k prompt tokens and they are
shared among instances with the same domain, slot or type; 2)
Prefix, a short sentence containing slot description, names of
domain, slot, and type, and all possible candidates if the query
slot is categorical; 3) Dialogue history, in which [sys] and
[usr] tokens are used to indicate the speaker; and 4) Ques-
tion, human-written question about the slot.
Target sequence and reiteration. We introduce the reiteration
technique in the target sequence as shown in Figure 1 and gen-
erate task information before the answer phrase. We include the
verbalized slot information as a “domain is domain name,
slot is slot name, type is type name” phrase in the ex-
pected output sequence. By doing so, we require the model
to optimize to remember the task information explicitly before
generating the answer phrase, while using a consistent text gen-
eration cross-entropy loss. This technique allows the model to
optimize upon both the answer and the sentence containing slot
metadata, and explicitly learn the task information.
Segment embeddings. The input sequence contains segments
with diverse formats and they are quite different from the for-
mat used in the pre-training phase of the LM. We divide the
input sequence into segments, including five prompt segments,
the system turns, the user turns and the answer segment. To-
kens within a specific segment are assigned the same segment
ID, and each segment ID maps to a unique segment embedding.
Segment embeddings, which have the same length as the input
sequence, are added with sequence embeddings and positional
embeddings. We randomly initialize the embeddings of seg-
ment IDs and update them during training.
Training and inference. We pass the combined embeddings to
the decoder stack to calculate the likelihood over the vocabu-
lary. We use the cross-entropy loss with a regularization term
to constrain the scale of prompt token embeddings following
L = CE + λ∥PE′ − PE∥22 where λ is a weighting factor, and
PE′ and PE are updated and initialized prompt token embed-
dings [39]. Parameters of the PLM are frozen, and only prompt

and segment embeddings are updated with Adam optimizer.
During inference, we generate the output autoregressively with
greedy decoding, and extract the answer with a rule-based func-
tion. For example, we extract predicted slot value “cheap” from
free-form generation output “answer is cheap”.

2.3. Soft prompt tokens

Prompt segments. We use two kinds of prompt tokens. Task
prompt tokens are chosen according to the task’s metadata, and
used in the domain, slot and type prompt segments. Word-
mapping prompt tokens are mapped from existing tokens in the
prefix and question parts and used to replace normal tokens. In
other words, task and word-mapping prompt tokens are shared
across instances with the same task and instances using the same
words respectively. We concatenate embeddings of each prompt
segment (obtained by separate embedding matrices) with dia-
logue history embeddings (obtained by the frozen token em-
bedding matrix) to form sequence embeddings.
Prompt initialization. To boost the performance in the low-
resource setting, we use the pre-trained token embeddings to
initialize the soft prompt token embeddings. The token embed-
dings from PLM are used to represent word semantics for lan-
guage understanding, while the soft prompt tokens are used to
represent task information initialized by task-related semantic
meanings. We initialize a task prompt token by embedding of a
randomly chosen token from its domain, slot or slot type name.
Word-mapping prompt tokens are initialized with the embed-
ding of the mapped word.

3. Experimental setup
Settings. We experiment on dialogues of five domains (i.e. at-
traction, hotel, restaurant, train, taxi) in MultiWOZ 2.0 [40] us-
ing the single-domain low-resource few-shot DST task. We take
5, 10, 20, 1%, 5% and 10% of training conversations of a par-
ticular domain to train, and evaluate on the full test set of the
domain.
Evaluation metrics. Joint Goal Accuracy (JGA) represents the
proportion of turns with all slots predicted correctly, and Slot
Accuracy (SA) reflects the proportion of correct slots. If a slot
is empty at a certain turn (for example, no related information
is mentioned), the model needs to predict “none”. A slot value
is only correct if it matches exactly with the ground-truth value.
Implementation details. We use different prompt embeddings
and learning rate schedules for the parameters of each prompt
segment, meaning even if the same token appears in the prefix
and question segments during initialization, it maps to differ-
ent prompt embeddings for a larger optimization space. We

4654

Table 1: Overall performance. We report Joint Goal Accuracy (JGA, %), which is higher the better. We report the numbers from
the paper (†), reproduction using author’s codebase (‡), or our re-implementation (§). 271K is the average parameter count across
domains. Detailed parameter counts are shown in Appendix A.1.

Model Params#
5 10 20 1% 5% 10% 5 10 20 1% 5% 10% 5 10 20 1% 5% 10%

Attraction (3 slots, 1% = 27 conv.) Hotel (10 slots, 1% = 33 conv.) Restaurant (7 slots, 1% = 38 conv.)

TRADE† — — — — 52.19 58.46 — — — — 31.93 41.29 — — — — 47.31 53.65
DSTQA† — — — — 51.58 61.77 — — — — 33.08 49.69 — — — — 35.33 54.27
T5DST‡ 60M 4.77 21.93 30.57 40.68 52.12 60.13 8.19 13.46 17.94 18.63 38.76 46.13 13.80 19.51 22.79 29.47 53.32 58.44
Lee et al. [22] § 60M 6.33 19.12 34.53 37.56 54.34 58.75 9.31 15.76 22.07 24.41 40.11 42.98 15.87 19.66 22.15 30.96 48.94 58.59
Li et al. [8] § 335M 7.90 27.09 35.63 42.18 49.13 60.85 12.49 15.15 19.44 24.04 37.88 46.47 17.27 22.30 25.68 30.70 49.75 58.50

Ours 271K 33.56 39.41 45.75 47.28 56.99 63.61 15.63 18.18 22.50 33.01 38.24 45.60 19.76 25.72 27.65 34.40 50.81 55.79

Taxi (4 slots, 1% = 15 conv.) Train (6 slots, 1% = 29 conv.) Average

TRADE† — — — — 59.03 60.51 — — — — 48.82 59.65 — — — — 47.86 54.71
DSTQA† — — — — 58.25 59.35 — — — — 50.36 61.28 — — — — 45.72 57.27
T5DST‡ 60M 48.22 53.74 58.27 58.19 59.23 69.03 12.31 21.93 36.45 43.93 69.27 69.48 17.46 26.11 33.20 38.18 54.54 60.64
Lee et al. [22] § 60M 45.32 49.93 58.58 58.52 60.77 71.23 13.57 25.02 38.52 50.26 69.32 69.72 18.08 25.90 35.17 40.34 54.70 60.25
Li et al. [8] § 335M 50.99 57.47 58.49 58.26 61.68 69.23 17.56 27.42 39.27 45.32 71.69 73.45 21.24 29.89 35.70 40.10 54.03 61.70

Ours 271K 51.11 59.63 60.89 60.33 61.63 63.00 18.95 30.95 50.34 52.05 69.51 75.00 27.80 34.78 41.43 45.41 55.44 60.60

use GPT-2 medium with 1024 hidden states as our backbone
model with a maximum output length of 20. We choose the
best epoch by monitoring the JGA of the development set. We
report the averaged result for three runs with different random
seeds for each experiment. All the models are trained on a sin-
gle NVIDIA A6000 GPU on a Ubuntu 20.04.2 OS. The imple-
mentations of the transformer-based models are extended from
the Huggingface codebase [41]. We use a 1e-3 learning rate.
Baseline models. We compare with the following works.1 1)
TRADE [42]: GRU-based model with copy mechanism; 2)
DSTQA [27]: QA-style model using ELMo representation;
3) T5DST [25]: T5-based generative model with slot type as
prompt; 4) Lee et al. (2021) [22]: T5-based generative model
with slot description and possible slot values as prompt; 5) Li
et al. (2021) [8]: GPT-2 based QA-style generative model with
manually created questions. The entire language model is up-
dated for T5DST, Lee et al. and Li et al., and they represent the
performance of prompt-based DST works. For Li et al., we use
GPT-2 medium as the backbone PLM and do not use DSTC8 for
transfer learning as it would introduce additional data resources
and make the comparison not fair. For T5DST and Lee et al.,
we use the T5-small PLM with 60M parameters.

4. Experimental results
4.1. Overall results.

We show the overall few-shot experimental results in Table 1.
Although our model uses only 0.08% and 0.45% of parameters
compared with baselines, it still achieves higher JGA than all
baseline models when using 1% or less training data across all
domains. Especially we observe around 5, and 9 points JGA
increases for the attraction and hotel domains com-
pared with existing best models with 1% training data. In the
attraction domain with 3 unique slots, our model trained
using 5 dialogues performs on par with the previous best model
using 20 dialogues. Our model shows its superiority especially
when the amount of unique tasks is small. Using 5% and 10%
data, our model performs comparably with existing best models

1We are not comparing with prompt-based DST works that jointly
train with other tasks for a fair comparison.

with small gaps. Our model outperforms the frozen LM version
of the baseline with even larger gaps as shown in Table 2.

Table 2: Comparison with the frozen LM variation of the base-
line using 1% training data for each domain (JGA, %).

Model Attr. Hotel Rest. Taxi Train

Li et al. [8] (frozen LM) 29.16 14.81 15.14 47.56 35.77
Li et al. [8] 42.18 24.04 30.70 58.26 45.32
Ours 47.28 33.01 34.40 60.33 52.05

open categorical time number day
55

60

65

70

75

80

85

90

95

Ours Li et al. T5DSTS
lo

t
A
cc

ur
ac

y
(%

)

Figure 2: Slot accuracy across slot types using 1% training
data, each dot represents a unique slot.

We demonstrate the performance of slots with different
types across all five domains in Figure 2 compared with two
generative baselines Li et al. [8] and T5DST [25]. We observe
the worst performance in OPEN slots, which could be explained
by the larger output candidate space. Breaking down slot type to
more fine-grained type leads to a better result (considering DAY
as a separate type rather than CATEGORICAL type, NUMBER
and TIME as separate types rather than OPEN type). Compared
with baselines, our model performs comparably on OPEN and
TIME slots, but is more superior for CATEGORICAL, NUMBER
and DAY slots.

We investigate the relationship between performance and
the number of unique candidate answers (ontology size) using
1% target domain training data and Figure 3 demonstrates the
result with trendlines created by expanding average algorithm
for each model. We also show the performance of two gen-
erative baseline models for comparison. We observe that the

4655

performance of all three models drops when the ontology size
grows. For most ontology sizes, our model outperforms Li et
al. [8] and T5DST [25].

0 50 100 150 200 250

60

70

80

90
Ours Li et al. T5DST

Number of unique candidate answers for a unique slot / ontology size

S
lo

t
A
cc

ur
ac

y
(%

)

Figure 3: Performance for slots with different ontology sizes

4.2. Ablation study.

In Table 3, removing the slot segment (Line 2) leads to the
largest performance drop among the three task prompt segments
(L1-3), as slot is the most fine-grained task categorization. Pre-
fix (L5) is more important than the question prompt (L4), which
contains more metadata and parameters. The model without
segment embedding (L6) has on average 7.8 points JGA drop,
indicating the effectiveness of the segment embedding.

We further examine the effectiveness of the reiteration tech-
nique in Table 4. We observe a significant JGA drop without
reiteration (11 points JGA drop for 10 training dialogues) espe-
cially when we have fewer training dialogues, which shows the
helpfulness of including explicit task information in the learn-
ing objective. When there are limited training data, reiteration
can help the model learn task boundaries among each slot faster
and better. Note that even without reiteration, our model per-
forms better than all baselines using 1% training data.

Table 3: Ablation study using 1% training data (JGA, %).

Model Attr. Hotel Rest. Taxi Train Avg

1 w/o domain 44.22 28.16 29.78 60.27 50.01 42.49
2 w/o slot 46.64 26.55 24.35 51.11 45.11 38.75
3 w/o type 45.30 25.26 33.65 59.89 51.91 43.20
4 w/o question 45.08 32.26 33.30 59.63 51.60 44.37
5 w/o prefix 42.98 28.78 31.54 57.72 47.00 41.60

6 w/o segment emb. 34.35 23.18 27.33 59.69 43.30 37.57

8 Full model 47.28 33.01 34.40 60.33 52.05 45.41

Table 4: Ablation study for the reiteration technique (JGA, %).

Few-shot Model Attr. Hotel Rest. Taxi Train Avg

5 w/o reit. 22.16 12.09 16.67 47.68 4.97 20.71
w/ reit. 33.56 15.63 19.76 51.11 18.95 27.80

10 w/o reit. 23.08 12.39 13.75 56.39 9.26 22.97
w/ reit. 39.41 18.18 24.72 59.63 30.95 34.58

1% w/o reit. 45.08 27.57 33.48 59.89 51.08 43.42
w/ reit. 47.28 33.01 34.40 60.33 52.05 45.41

4.3. Error and qualitative analysis.

We categorize error cases as: 1) hallucination: predicting value
for an empty slot; 2) omission: predicting “none” for a non-
empty slot; 3) wrong value: predicting wrong real value for
a non-empty slot [28]. Figure 4 shows the error distribution

in terms of the proportion of each error category. The general
OPEN slots (including TIME and NUMBER) have relatively more
omission errors, while the general CATEGORICAL slots have rel-
atively more hallucination errors. Our model is more conserva-
tive for OPEN slots compared with Li et al. [8].

0.17
0.25

0.11

0.27 0.24

0.60
0.50

0.56
0.50

0.44

0.65
0.52 0.68 0.54

0.49
0.18

0.36 0.33
0.31

0.24

0.18 0.23 0.21 0.19 0.27 0.22 0.14 0.10 0.19 0.32

Ours Li et al. Ours Li et al. Ours Li et al. Ours Li et al. Ours Li et al.
open time number categorical day

0

0.2

0.4

0.6

0.8

1

Hallucination Omission Wrong_Value

Figure 4: Error distribution across slot types

We then investigate semantic information contained in the
learned prompt tokens by selecting the most changed prompt
tokens and producing the closest tokens with the smallest co-
sine similarity between the learned prompt token embedding
and frozen token embeddings of the PLM. We show the result
for the attraction domain in Table 5. The closest tokens are
mostly variations or semantically similar tokens of the expected
meanings of prompt tokens.

Table 5: Closest tokens for the most changed prompt tokens in
five prompt segments for the attraction domain.

Prompt token Closest tokens

<domain attraction 4> raction; ractions; racted<slot name 2> name; Name; names<type open 3> open; Open; opened
special special; Special; statistical
Q answer; Answer; answered

5. Conclusion and future work
We propose a parameter-efficient DST model using prompt tun-
ing, and it represents tasks with soft prompt tokens with seg-
ment awareness and reiteration. Our model achieves state-of-
the-art low-resource DST performance with less than 0.5% pa-
rameters compared with fine-tuning LM. We plan to further in-
vestigate the effects of prompt tuning on domain adaptation and
prompt aggregation.

6. Acknowledgements
Many thanks to Sidi Lu, Tanmay Parekh, and Sarik Ghazarian
for internal reviews, to members at Amazon Alexa AI, PLUS
lab and UCLA-NLP for suggestions, and to the anonymous re-
viewers for their feedback.

A. Appendix
A.1. Detailed Parameter Count
Table 6: The number of prompt tokens and parameters needed.

Attr. Hotel Rest. Taxi Train

Domain 5 20 20 10 10
Slot 15 200 140 40 60
Type 10 80 100 20 40
Question 20 46 36 19 27
Prefix 60 117 84 29 76

All prompt tokens # 110 463 380 118 213
Params # 120832 482304 397312 129024 226304

4656

B. References
[1] Z. Wang and O. Lemon, “A simple and generic belief tracking

mechanism for the dialog state tracking challenge: On the believ-
ability of observed information,” in SIGDIAL, Aug. 2013.

[2] F. Ye, J. Manotumruksa, Q. Zhang, S. Li, and E. Yilmaz, “Slot
self-attentive dialogue state tracking,” in WWW, 2021.

[3] L. Chen, B. Lv, C. Wang, S. Zhu, B. Tan, and K. Yu, “Schema-
guided multi-domain dialogue state tracking with graph attention
neural networks,” in AAAI, 2020.

[4] S. Gao, A. Sethi, S. Agarwal, T. Chung, and D. Hakkani-Tur, “Di-
alog state tracking: A neural reading comprehension approach,”
in SIGdial Meeting on Discourse and Dialogue, Sep. 2019.

[5] Z. Lin, A. Madotto, G. I. Winata, and P. Fung, “MinTL: Min-
imalist transfer learning for task-oriented dialogue systems,” in
EMNLP, Nov. 2020.

[6] D. Ham, J.-G. Lee, Y. Jang, and K.-E. Kim, “End-to-end neu-
ral pipeline for goal-oriented dialogue systems using GPT-2,” in
ACL, Jul. 2020.

[7] E. Hosseini-Asl, B. McCann, C.-S. Wu, S. Yavuz, and R. Socher,
“A simple language model for task-oriented dialogue,” Advances
in Neural Information Processing Systems, 2020.

[8] S. Li, J. Cao, M. Sridhar, H. Zhu, S.-W. Li, W. Hamza, and
J. McAuley, “Zero-shot generalization in dialog state tracking
through generative question answering,” in EACL, Apr. 2021.

[9] B. Peng, C. Li, J. Li, S. Shayandeh, L. Liden, and J. Gao, “Soloist:
Building task bots at scale with transfer learning and machine
teaching,” TACL, vol. 9, 2021.

[10] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig,
“Pre-train, prompt, and predict: A systematic survey of prompt-
ing methods in natural language processing,” arXiv preprint
arXiv:2107.13586, 2021.

[11] M. D. Ma, X. Wang, P.-N. Kung, P. J. Brantingham, N. Peng,
and W. Wang, “STAR: Boosting low-resource event extraction
by structure-to-text data generation with large language models,”
arXiv preprint arXiv:2305.15090, May 2023.

[12] T. Gao, A. Fisch, and D. Chen, “Making pre-trained language
models better few-shot learners,” in ACL-IJCNLP, Aug. 2021.

[13] X. L. Li and P. Liang, “Prefix-tuning: Optimizing continuous
prompts for generation,” in ACL-IJCNLP, Aug. 2021.

[14] M. D. Ma, A. K. Taylor, W. Wang, and N. Peng, “DICE: Data-
efficient clinical event extraction with generative models,” in ACL,
Jul. 2023.

[15] J. Xu, M. D. Ma, and M. Chen, “Can NLI provide proper indirect
supervision for low-resource biomedical relation extraction?” in
ACL, Jul. 2023.

[16] Y. Zhu, J. Feng, C. Zhao, M. Wang, and L. Li, “Counter-
interference adapter for multilingual machine translation,” in
Findings of ACL: EMNLP, Nov. 2021.

[17] B. Lester, R. Al-Rfou, and N. Constant, “The power of scale for
parameter-efficient prompt tuning,” in EMNLP, Nov. 2021.

[18] Y. Gu, X. Han, Z. Liu, and M. Huang, “PPT: Pre-trained prompt
tuning for few-shot learning,” in ACL, May 2022.

[19] T. Vu, B. Lester, N. Constant, R. Al-Rfou’, and D. Cer, “SPoT:
Better frozen model adaptation through soft prompt transfer,” in
ACL, May 2022.

[20] S. Lee and R. Jha, “Zero-shot adaptive transfer for conversational
language understanding,” in AAAI, 2019.

[21] J. Zhao, M. Mahdieh, Y. Zhang, Y. Cao, and Y. Wu, “Effective
sequence-to-sequence dialogue state tracking,” in EMNLP, 2021.

[22] C.-H. Lee, H. Cheng, and M. Ostendorf, “Dialogue state track-
ing with a language model using schema-driven prompting,” in
EMNLP, Nov. 2021.

[23] Y. Su, L. Shu, E. Mansimov, A. Gupta, D. Cai, Y.-A. Lai, and
Y. Zhang, “Multi-task pre-training for plug-and-play task-oriented
dialogue system,” in ACL, 2022.

[24] A. Rastogi, X. Zang, S. Sunkara, R. Gupta, and P. Khaitan, “To-
wards scalable multi-domain conversational agents: The schema-
guided dialogue dataset,” in AAAI, 2020.

[25] Z. Lin, B. Liu, S. Moon, P. Crook, Z. Zhou, Z. Wang, Z. Yu,
A. Madotto, E. Cho, and R. Subba, “Leveraging slot descriptions
for zero-shot cross-domain dialogue StateTracking,” in NAACL,
Jun. 2021.

[26] R. Gupta, H. Lee, J. Zhao, Y. Cao, A. Rastogi, and Y. Wu, “Show,
don’t tell: Demonstrations outperform descriptions for schema-
guided task-oriented dialogue,” in NAACL, Jul. 2022.

[27] L. Zhou and K. Small, “Multi-domain dialogue state tracking as
dynamic knowledge graph enhanced question answering,” ArXiv,
vol. abs/1911.06192, 2019.

[28] S. Gao, S. Agarwal, D. Jin, T. Chung, and D. Hakkani-Tur, “From
machine reading comprehension to dialogue state tracking: Bridg-
ing the gap,” in Workshop on NLP for Conversational AI, 2020.

[29] Z. Lin, B. Liu, A. Madotto, S. Moon, Z. Zhou, P. Crook, Z. Wang,
Z. Yu, E. Cho, R. Subba, and P. Fung, “Zero-shot dialogue state
tracking via cross-task transfer,” in EMNLP, Nov. 2021.

[30] Y. Wu, H. Wang, D. Zhang, G. Chen, and H. Zhang,
“Incorporating instructional prompts into a unified generative
framework for joint multiple intent detection and slot filling,”
in Proceedings of the 29th International Conference on
Computational Linguistics. Gyeongju, Republic of Korea:
International Committee on Computational Linguistics, Oct.
2022, pp. 7203–7208. [Online]. Available: https://aclanthology.
org/2022.coling-1.631

[31] C. Clarke, J. Peper, K. Krishnamurthy, W. Talamonti, K. Leach,
W. Lasecki, Y. Kang, L. Tang, and J. Mars, “One agent to rule
them all: Towards multi-agent conversational AI,” in Findings of
ACL: ACL, May 2022.

[32] A. Sauer, S. Asaadi, and F. Küch, “Knowledge distillation meets
few-shot learning: An approach for few-shot intent classification
within and across domains,” in Workshop on NLP for Conversa-
tional AI, 2022.

[33] A. Maronikolakis and H. Schütze, “Multidomain pretrained lan-
guage models for green NLP,” in Workshop on Domain Adapta-
tion for NLP, 2021.

[34] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy
considerations for deep learning in NLP,” in ACL, Jul. 2019.

[35] A. Lacoste, A. Luccioni, V. Schmidt, and T. Dandres, “Quanti-
fying the carbon emissions of machine learning,” arXiv preprint
arXiv:1910.09700, 2019.

[36] Q. Zhu, B. Li, F. Mi, X. Zhu, and M. Huang, “Continual prompt
tuning for dialog state tracking,” in ACL, May 2022.

[37] X. Zang, A. Rastogi, S. Sunkara, R. Gupta, J. Zhang, and J. Chen,
“MultiWOZ 2.2 : A dialogue dataset with additional annotation
corrections and state tracking baselines,” in Workshop on NLP for
Conversational AI, 2020.

[38] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever
et al., “Language models are unsupervised multitask learners,”
OpenAI blog, vol. 1, no. 8, p. 9, 2019.

[39] T. Müller, G. Pérez-Torró, and M. Franco-Salvador, “Few-shot
learning with Siamese networks and label tuning,” in ACL, 2022.

[40] P. Budzianowski, T.-H. Wen, B.-H. Tseng, I. Casanueva, S. Ultes,
O. Ramadan, and M. Gašić, “MultiWOZ - a large-scale multi-
domain Wizard-of-Oz dataset for task-oriented dialogue mod-
elling,” in EMNLP, 2018.

[41] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer,
P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao, S. Gug-
ger, M. Drame, Q. Lhoest, and A. Rush, “Transformers: State-of-
the-art natural language processing,” in EMNLP: Demos, 2020.

[42] C.-S. Wu, A. Madotto, E. Hosseini-Asl, C. Xiong, R. Socher,
and P. Fung, “Transferable multi-domain state generator for task-
oriented dialogue systems,” in ACL, Jul. 2019.

4657

