
N-best T5: Robust ASR Error Correction using Multiple Input Hypotheses
and Constrained Decoding Space

Rao Ma, Mark J. F. Gales, Kate M. Knill, Mengjie Qian

ALTA Institute, Machine Intelligence Lab, Department of Engineering, Cambridge University, UK
{rm2114,mjfg100,kmk1001,mq227}@cam.ac.uk

Abstract
Error correction models form an important part of Automatic
Speech Recognition (ASR) post-processing to improve the
readability and quality of transcriptions. Most prior works use
the 1-best ASR hypothesis as input and therefore can only per-
form correction by leveraging the context within one sentence.
In this work, we propose a novel N-best T5 model for this task,
which is fine-tuned from a T5 model and utilizes ASR N-best
lists as model input. By transferring knowledge from the pre-
trained language model and obtaining richer information from
the ASR decoding space, the proposed approach outperforms
a strong Conformer-Transducer baseline. Another issue with
standard error correction is that the generation process is not
well-guided. To address this a constrained decoding process,
either based on the N-best list or an ASR lattice, is used which
allows additional information to be propagated.
Index Terms: speech recognition, error correction, ASR N-best
list, path merging, lattice-constrained decoding

1. Introduction
Automated speech recognition (ASR) refers to the advanced
technology of transcribing human speech into readable text.
Early ASR systems employed HMM-based architectures where
different modules such as the acoustic model, language model,
and pronunciation lexicon, were trained separately and com-
bined effectively during the decoding process. Recently, with
the development of computing resources and availability of
high-quality speech data, end-to-end (E2E) ASR models such
as LAS and RNN-T have shown better performance and be-
come more prevailing in both academia and industry [1, 2, 3].
Many successful applications have been built based on large-
scale E2E ASR models with the aim of helping targeted users
increase their productivity [4].

Although ASR systems have shown good performance in
general, even beating human transcribers in terms of recog-
nition accuracy in some experimental settings, they still face
challenges when deployed in practice [5]. Therefore, error
correction models that are expected to correct errors within
the ASR output continue to serve an important role in post-
processing [6]. Recently, end-to-end error correction models
have shown promising performance on this task [7, 8, 9, 10].
Most works on error correction share a similar structure, tak-
ing the 1-best recognized hypothesis from the ASR system as
input. The reference text is used as the target in training and
beam search is used for generation in inference. We argue that

This paper reports on research supported by Cambridge Univer-
sity Press & Assessment, a department of The Chancellor, Masters, and
Scholars of the University of Cambridge.

this standard practice does not provide enough information to
the encoder and also gives the model too much freedom in de-
coding, which results in degraded performance.

The error correction model does not have access to the orig-
inal utterance and makes predictions based on the ASR output.
When the error correction model uses the 1-best hypothesis as
input, it can only make predictions based on words within a
single sentence. This sentence, however, contains limited in-
formation about the utterance and might be erroneous. Differ-
ent strategies have been proposed to tackle this problem. Some
works focus on obtaining and utilizing a more compact output
from the ASR system such as the N-best list [11, 12], a word
confusion net (WCN) [13], and a lattice [14, 15]. Other works
propose using additional features such as phoneme sequences
[16] in the correction process. These modifications enable the
error correction model to obtain more useful information, mak-
ing error detection and correction easier to perform.

To boost the performance of error correction models, we
propose to fine-tune from a pre-trained language model (PLM)
using concatenated N-best lists as input. With this extended in-
put, the error correction model can effectively compare the dif-
ference between each hypothesis and becomes aware of the po-
sitions where the ASR system might have made mistakes. Since
the oracle WER in the N-best list is relatively low, words within
the N-best list also serve as a kind of “cues” to help the model
recover the correct tokens. By fine-tuning from a high perform-
ing text-to-text transfer transformer (T5) model [17], we can
take advantage of the structured knowledge implicitly learned
from wide-ranging text data. As PLMs are pre-trained on large-
scale text corpus via unsupervised learning, we hypothesize that
these models can be easily adapted to plain text inputs, such as
N-best lists, rather than more complex representations such as a
lattice or WCN.

Error correction models usually use beam search in decod-
ing, which we refer to as unconstrained decoding in this paper.
For PLMs, words with similar meanings that share similar con-
texts are usually close to each other in the embedding parameter
space. In some cases the model incorrectly generates synonyms
that sound very different from the original utterance. To im-
prove the robustness of the error correction model, we assume
that it should only output hypotheses that also have a high ASR
probability. To achieve this, we generate lattices in the decoding
of the Transducer ASR model and propose several constrained
decoding algorithms for the correction model.

The contributions of our work are as follows: This is the
first paper in the error correction area to transfer knowledge
from a pre-trained language model using N-best lists as in-
put. Only a simple data augmentation method, SpecAugment,
is needed for training data preparation. Compared to a strong
Conformer-Transducer ASR baseline, we achieved a 7% WER

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

3267 10.21437/Interspeech.2023-1616



reduction on test sets by using N-best lists as input. To further
improve model performance we introduce a novel lattice gener-
ation and conversion algorithm to the ASR Transducer model.
By constraining the decoding space of the N-best T5 model we
achieved up to 12% WER reduction on the test sets.

2. Discussion on ASR Output
The error correction model, as a downstream task of speech
recognition, aims to correct errors contained in ASR transcrip-
tions. Therefore, the input of the correction model is dependent
on the output of the ASR system. In this section we discuss the
different types of ASR outputs utilized in our experiments.

E2E ASR models typically employ the beam search algo-
rithm to find the best decoding result. Suppose the beam size
is n, at each time step a sentence list containing n-best partial
hypotheses is maintained and updated. When the decoding pro-
cess is completed for an utterance, we can get an ASR N-best
list in addition to the 1-best recognition hypothesis.

A word lattice represents multiple ASR hypotheses and as-
sociated scores in a compact graph structure. It has been ex-
tensively exploited in HMM-based ASR systems [18, 19, 20].
Recent works attempt to produce lattices during the decoding of
E2E ASR models [21, 22]. [21] introduces K-gram context ap-
proximation to RNN-T, which assumes that the prediction net-
work only needs to rely on the previous k − 1 tokens instead
of the entire predicted sentence history for effective estimation.
Based on this assumption, a path-merging algorithm is proposed
for beam search. At each decoding step, two partial hypotheses
are merged if their last k − 1 tokens are identical. Then paths
with lower scores are removed from the active beam but are kept
in the lattice graph.

Figure 1: An example of the generated ASR lattice.

An example of a generated lattice with k = 3 is depicted
in Figure 1. Past work has shown that the oracle WER in the
lattice is reduced compared to the 1-best ASR hypothesis [21],
however, whether the usage of the generated lattice can benefit
downstream tasks remains to be demonstrated. In this paper, we
show how the lattice produced in the Transducer decoding can
help to improve the performance of the error correction system.

3. N-best T5 Model
3.1. Model Structure

A traditional error correction model uses the 1-best hypothesis
generated by the ASR model as model input. With such limited
information, it is difficult for the model to detect the errors or
to make the right corrections. Meanwhile, an N-best list is al-
ways output by the ASR model as a byproduct of beam search.
Hypotheses within this list are highly possible transcriptions of
the original utterance and yield lower WER results compared
to the 1-best hypothesis. By leveraging the diversified hypothe-
ses contained in the N-best list, the error correction model can
make more accurate and informed predictions.

The proposed N-best T5 error correction model is shown in
Figure 2. It is based on a pre-trained T5 model with some mod-
ifications. N refers to how many top hypotheses we obtain from

Figure 2: Model structure of N-best T5.

the ASR system, which is a hyper-parameter to be examined.
In training and decoding, we concatenate the ASR N-best list
and add a special token between different hypotheses to denote
the sentence end. To comply with the pre-training practice of
T5, a prefix “text correction:” is inserted to the input sequence.
Preliminary experimental results show that without using the
prefix, performance drops on the validation set.

Since the language model structure remains the same in the
fine-tuning phase, the proposed method easily works with any
PLM from third-party packages. Furthermore, as the N-best list
can be easily obtained from ASR systems without the need of
in-depth access, this error correction method can be applied to
black-box ASR models integrated in cloud services.

3.2. Constrained Decoding in Inference

So far we have introduced how to incorporate more information
into the encoder part of our proposed model. How to provide
guidance for decoding and achieving controllable generation
is another interesting question. The beam search algorithm is
widely used as an approximation for finding the best generation
result within the entire decoding space. This gives the model
too much freedom, however, and we do not have much control
over this decoding process [23]. For example, we hope the pro-
posed model keeps correct words from the original transcrip-
tion and only corrects incorrect words. In addition, the model
is expected to output homophones of detected erroneous words.
Although the model can implicitly learn these features from the
training data, there is no guarantee in the decoding. For exam-
ple, the model might output synonyms that have a high embed-
ding similarity to words in the reference text. We propose sev-
eral alternative decoding algorithms to better achieve the goal.

3.2.1. Unconstrained Decoding

The original decoding target is to find ŷ that satisfies

ŷ = argmaxy logP (y|Z;θEC) (1)

where Z = {ẑ(1), ẑ(2), · · · , ẑ(n)} is the input to the N-best
T5 encoder containing n ASR hypotheses. Since it is time-
consuming to find the globally optimal sequence satisfying this
equation, heuristic algorithms such as beam search are often
used in decoding. Since no explicit constraints about the gen-
erated sequence are applied during decoding, we refer to this
method as unconstrained decoding in this paper.

3.2.2. N-best Constrained Decoding

The original decoding space of the error correction model is un-
bounded. However, we expect the generated correction results
to sound similar to the original utterance. The N-best list con-
tains hypotheses generated by the ASR system which are most

3268



likely to be the correct transcription. In N-best constrained de-
coding, we force the generation results to sentences within this
ASR N-best list. Furthermore, since each path in the N-best list
is also associated with a score calculated by the ASR system, we
can combine the scores from two models with an interpolation
weight λ. To be specific, ŷ is the decoding result that maxi-
mizes Equation 2. x and Z refer to the input acoustic features
of the ASR system and the obtained ASR N-best list.

ŷ = argmaxy∈Z [(1− λ) · logP (y|x;θASR)

+ λ · logP (y|Z;θEC)]
(2)

3.2.3. Lattice Constrained Decoding

An ASR N-best list can only encode a small subset of all the
possible decoding results. Therefore, constraining the decoding
result to appear in the N-best list might be a strict condition.
Another data structure to consider is the lattice generated with
path merging. Here, we restrict the decoding space to paths G
in the lattice and combine ASR scores in the decoding.

ŷ = argmaxy∈G [(1− λ) · logP (y|x;θASR)

+ λ · logP (y|Z;θEC)]
(3)

Since the ASR model and the pre-trained language model
use different tokenizers, we need to convert the original lattice
into an equivalent form suitable for the N-best T5 to process.
The lattice with ASR BPE tokens is first converted into a word
lattice with dynamic programming as in Figure 3. The words on
the edges are then split into BPE tokens by the tokenizer of T5,
which is shown in Figure 4. The detailed decoding algorithm is
shown in Algorithm 1, which is adapted from [24]. A similar
algorithm is proposed in [14] while the lattice is obtained from
different generation processes.

Figure 3: Example lattice with words.

Figure 4: Example lattice with PLM BPE tokens.

4. Experiments
4.1. Experiment Setup

We conduct experiments on the LibriSpeech dataset [25]. The
data is collected from audiobook readings and the training
set contains 960hr of speech data. We test on four subsets:
dev clean, dev other, test clean, and test other, each contain-
ing ∼5hr of speech. 80-dimensional log-mel filterbank features
are extracted from the utterances and the sample rate is 16kHz.

The ASR model utilized in this paper adopts a novel
Conformer-Transducer structure [3]. The encoder contains 12
Conformer layers with a hidden size of 512. The predictor has

Algorithm 1 Lattice Constrained Decoding for N-best T5
Data: lattice node set V , lattice edge set E , beam width b, T5 encoder
outputs {hj}
1: Q← topological sort(V)
2: for v in V do
3: Hv ← min heap()
4: end for
5: n0.history = ϵ, n0.score = 0
6: Hstart.put(n0)
7: for v in Q do
8: o = Decoder({hj}, n.history, v.word)
9: for ⟨v, x⟩ in E do

10: for n in Hv do
11: n′.history = concat(n.history, v.word)
12: n′.score = n.score+λ·log(o[x.word])+(1−λ)·log svx
13: if Hx.size ≥ b ∧Hx.score.min() < n′.score then
14: Hx.remove min()
15: end if
16: if Hx.size < b then
17: Hx.put(n′)
18: end if
19: end for
20: end for
21: end for
22: I = max heap(Hend.items)
23: return I .max()

one LSTM layer. The hidden dimensions of the jointer and pre-
dictor are both 512. SpecAugment [26] and speed perturbation
are used for training data augmentation. The hyper-parameters
of this Transducer model follow the ESPnet code base [27].

The error correction model learns from the erroneous tran-
scriptions generated by the ASR model. Since the ASR model
is trained on the training speech data, it shows an extremely
low WER rate (close to zero) on this set. Data augmentation
techniques are needed so that the error correction model gen-
eralizes to speech data unseen by the ASR model. Past works
have used different data generation methods including decoding
with under-performed ASR model [10], usage of dropout in the
ASR decoding [7], and decoding on pseudo TTS data [28], etc.

In this work, we only use one simple yet effective data aug-
mentation method, SpecAugment. Two frequency masks with
mask parameter F = 30, eight time masks with mask param-
eter T = 40, and time warping with warp parameter W = 40
are utilized on the training speech data. We decode the ASR
model on this perturbed data set and filter out sentences with
WER higher than 0.25. The resulting training text corpus con-
tains 262K sentence pairs. It is worth noting that in this work
we do not leverage the extra text corpus of LibriSpeech. We
assume that only the training speech is available for the error
correction task, which is a more general case. Therefore, our
training pipeline can be easily adapted to any speech corpus.

The error correction model is initialized using a pre-trained
T5 base model. The model has 6 Transformer blocks for both
the encoder and decoder with a hidden dimension of 768. We
train the model on the perturbed training data for 3 epochs.
AdamW [29] is utilized as the optimizer and the initial learn-
ing rate is 5e-5. In fine-tuning, the dropout rate is set to 0.1.
A batch size of 32 is used for both training and testing. In the
constrained decoding process, optimal interpolation weight λ is
searched in the range of [0.0, 1.0] with a grid size of 0.05. In
lattice constrained decoding, the beam width b is set to 1, and
larger values yield similar results.

3269



Table 1: ASR system performance.

Data Dev Test
clean other clean other

Beam Search 2.71 6.99 2.88 7.06
+ Path Merging 2.70 7.01 2.91 7.13

4.2. Error Correction Results

In Table 1 we show the baseline results of the ASR model. Here
we list the WER results of the 1-best decoding hypothesis ob-
tained with and without path merging in the beam search. For
both methods, a beam width of 10 is used in the decoding.
Therefore, an N-best list containing the 10 best hypotheses is
generated during decoding. For path merging, similar paths are
merged with a context size of k = 4. The results are simi-
lar to [21] in that the performance of the ASR system decoded
with the path-merging scheme shows comparable performance
to the counterpart using full-context history.

Table 2: Oracle WER results in ASR outputs.

ASR Output Dev Test
clean other clean other

5-best List 1.35 4.72 1.44 4.66
10-best List 1.24 4.43 1.34 4.34
Lattice 0.79 2.98 0.89 3.00

Table 2 shows the oracle WER results in different ASR out-
puts. The 5-best list contains the top 5 hypotheses from the
10-best list. The oracle WER in the 5-best list and 10-best list
improve by 38.6% and 42.8% compared to the ASR baseline.
Therefore, words within the N-best list can help the model to
recover the correct transcription. By merging partial hypothe-
ses with similar sentence history, we can generate word lattices
in the decoding. As shown in the table, the lattice yields lower
oracle WER results on the test sets. Results indicate that N-best
lists and lattices can provide guidance in the decoder of the error
correction model to achieve controllable decoding.

Table 3: Results for ASR baseline and N-best T5 models with
different model inputs.

Model Dev Test
clean other clean other

Baseline 2.71 6.99 2.88 7.06

1-best T5 2.89 6.94 3.02 7.18
5-best T5 2.62 6.40 2.77 6.67
10-best T5 2.60 6.25 2.67 6.56

The results of training an error correction model with dif-
ferent model inputs are listed in Table 3. In the decoding of the
error correction model, the beam search algorithm with a beam
size of 10 is used. From the table, we can see that the model
fails to yield good results only using the 1-best decoding hy-
pothesis as model input. Possible reasons have been discussed
in this paper that without enough input information, the model
fails to improve performance over a strong ASR system. For
the 5-best T5 and the 10-best T5 model, 4.7% and 7.2% per-
formance gains could be seen compared to the baseline ASR
model. The results indicate that with a larger N, the error cor-
rection model obtains richer information from diversified input,
which leads to more accurate error detection and correction.

4.3. Comparison of Decoding Algorithms

In this experiment, we compare the WER results of the N-best
T5 model using different decoding algorithms. As shown in
Table 4, by adding more constraints in the decoding process,
the model performance is improved for both 5-best T5 and 10-
best T5 models. With the proposed methods, we can guide the
error correction model to generate homophones of the mistaken
words. Since a lattice contains more possible paths compared to
an N-best list and yields lower oracle WER, lattice-constrained
decoding gives slightly better performance than N-best con-
strained decoding on the test sets.

Table 4: Comparison of ASR baseline and N-best T5 model with
different decoding algorithms.

Model Decoding Method Dev Test
clean other clean other

Baseline - 2.71 6.99 2.88 7.06

5-best T5
Unconstrained 2.62 6.40 2.77 6.67
N-best Constrained 2.38 6.25 2.55 6.38
Lattice Constrained 2.40 6.21 2.54 6.34

10-best T5
Unconstrained 2.60 6.25 2.67 6.56
N-best Constrained 2.39 6.17 2.54 6.31
Lattice Constrained 2.41 6.11 2.53 6.27

The effect of interpolation weight λ on the constrained de-
coding is depicted in Figure 5. λ is the weight of the error cor-
rection model. As the figure shows, constrained decoding with
λ = 1 outperforms the plain beam search. In these cases, we
constrain the error correction model to only generate hypothe-
ses that are in the ASR N-best list or lattice rather than the entire
decoding space. When 0 < λ < 1, the scores calculated by the
ASR system are linearly combined to bias the result towards
paths with higher acoustic probabilities. The best performance
is achieved when λ is around 0.75.

Figure 5: Performance of 10-best T5 error correction model on
test other with different interpolation weights λ.

5. Conclusions
In this work, we propose an effective error correction model
based on transfer learning from pre-trained language models.
The performance of the proposed method consistently improves
over the performance of a strong ASR model on the LibriSpeech
test sets. The two contributions of this paper: the usage of the
N-best list as input to PLMs and constrained decoding algo-
rithms based on the output from E2E ASR models can be ap-
plied to other models within the error correction area.

3270



6. References
[1] A. Graves and N. Jaitly, “Towards end-to-end speech recognition

with recurrent neural networks,” in Proc. International Confer-
ence on Machine Learning. PMLR, 2014, pp. 1764–1772.

[2] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend
and spell: A neural network for large vocabulary conversational
speech recognition,” in Proc. 2016 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2016, pp. 4960–4964.

[3] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han,
S. Wang, Z. Zhang, Y. Wu et al., “Conformer: Convolution-
augmented transformer for speech recognition,” in Proc. Inter-
speech 2020, 2020, pp. 5036–5040.

[4] M. B. Hoy, “Alexa, Siri, Cortana, and more: an introduction to
voice assistants,” Medical Reference Services Quarterly, vol. 37,
no. 1, pp. 81–88, 2018.

[5] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and
I. Sutskever, “Robust speech recognition via large-scale weak su-
pervision,” arXiv preprint arXiv:2212.04356, 2022.

[6] R. Errattahi, A. El Hannani, and H. Ouahmane, “Automatic
speech recognition errors detection and correction: A review,”
Procedia Computer Science, vol. 128, pp. 32–37, 2018.

[7] O. Hrinchuk, M. Popova, and B. Ginsburg, “Correction of auto-
matic speech recognition with transformer sequence-to-sequence
model,” in Proc. 2020 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, 2020, pp.
7074–7078.

[8] S. Zhang, M. Lei, and Z. Yan, “Automatic spelling correction with
transformer for CTC-based end-to-end speech recognition,” arXiv
preprint arXiv:1904.10045, 2019.

[9] S. Dutta, S. Jain, A. Maheshwari, G. Ramakrishnan, and P. Jyothi,
“Error correction in ASR using sequence-to-sequence models,”
arXiv preprint arXiv:2202.01157, 2022.

[10] Y. Zhao, X. Yang, J. Wang, Y. Gao, C. Yan, and Y. Zhou, “BART
based semantic correction for Mandarin automatic speech recog-
nition system,” in Proc. Interspeech 2021, 2021.

[11] L. Zhu, W. Liu, L. Liu, and E. Lin, “Improving ASR error
correction using n-best hypotheses,” in Proc. 2021 IEEE Auto-
matic Speech Recognition and Understanding Workshop (ASRU).
IEEE, 2021, pp. 83–89.

[12] Y. Leng, X. Tan, R. Wang, L. Zhu, J. Xu, W. Liu, L. Liu, X.-Y. Li,
T. Qin, E. Lin et al., “Fastcorrect 2: Fast error correction on mul-
tiple candidates for automatic speech recognition,” in Proc. Find-
ings of the Association for Computational Linguistics: EMNLP
2021, 2021, pp. 4328–4337.

[13] Y. Weng, S. S. Miryala, C. Khatri, R. Wang, H. Zheng, P. Molino,
M. Namazifar, A. Papangelis, H. Williams, F. Bell et al., “Joint
contextual modeling for ASR correction and language under-
standing,” in Proc. 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020,
pp. 6349–6353.

[14] R. Ma, H. Li, Q. Liu, L. Chen, and K. Yu, “Neural lattice search
for speech recognition,” in Proc. 2020 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2020, pp. 7794–7798.

[15] L. Dai, L. Chen, Z. Zhou, and K. Yu, “LatticeBART: Lattice-to-
lattice pre-training for speech recognition,” in Proc. 2022 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2022, pp. 6112–6116.

[16] H. Wang, S. Dong, Y. Liu, J. Logan, A. K. Agrawal, and Y. Liu,
“ASR error correction with augmented transformer for entity re-
trieval,” in Proc. Interspeech 2020, 2020.

[17] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer
learning with a unified text-to-text transformer,” Journal of Ma-
chine Learning Research, vol. 21, no. 1, pp. 5485–5551, 2020.

[18] H. Xu, T. Chen, D. Gao, Y. Wang, K. Li, N. Goel, Y. Carmiel,
D. Povey, and S. Khudanpur, “A pruned RNNLM lattice-rescoring
algorithm for automatic speech recognition,” in Proc. 2018 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2018, pp. 5929–5933.

[19] P. Zhang, B. Chen, N. Ge, and K. Fan, “Lattice transformer for
speech translation,” in Proc. 57th Annual Meeting of the Associa-
tion for Computational Linguistics, 2019, pp. 6475–6484.

[20] X. Liu, X. Chen, Y. Wang, M. J. Gales, and P. C. Woodland, “Two
efficient lattice rescoring methods using recurrent neural network
language models,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 24, no. 8, pp. 1438–1449, 2016.

[21] R. Prabhavalkar, Y. He, D. Rybach, S. Campbell, A. Narayanan,
T. Strohman, and T. N. Sainath, “Less is more: Improved RNN-T
decoding using limited label context and path merging,” in Proc.
2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2021, pp. 5659–5663.

[22] M. Novak, P. Papadopoulos, and A. A. AI, “RNN-T lattice en-
hancement by grafting of pruned paths,” in Proc. Interspeech
2022, 2022, pp. 4960–4964.

[23] S. Dathathri, A. Madotto, J. Lan, J. Hung, E. Frank, P. Molino,
J. Yosinski, and R. Liu, “Plug and play language models: A sim-
ple approach to controlled text generation,” in Proc. International
Conference on Learning Representations, 2020.

[24] M. Auli, M. Galley, C. Quirk, and G. Zweig, “Joint language
and translation modeling with recurrent neural networks,” in Proc.
EMNLP, 2013.

[25] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: an ASR corpus based on public domain audio books,” in
Proc. 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2015, pp. 5206–5210.

[26] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D.
Cubuk, and Q. V. Le, “SpecAugment: A simple data augmen-
tation method for automatic speech recognition,” in Proc. Inter-
speech 2019, 2019, pp. 2613–2617.

[27] S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba, Y. Unno,
N.-E. Y. Soplin, J. Heymann, M. Wiesner, N. Chen et al., “ESP-
net: End-to-End Speech Processing Toolkit,” in Proc. Interspeech
2018, 2018, pp. 2207–2211.

[28] J. Guo, T. N. Sainath, and R. J. Weiss, “A spelling correction
model for end-to-end speech recognition,” in Proc. 2019 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2019, pp. 5651–5655.

[29] I. Loshchilov and F. Hutter, “Decoupled weight decay regulariza-
tion,” in Proc. International Conference on Learning Representa-
tions, 2019.

3271


