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Abstract

In this paper, we provide a new perspective on self-supervised
speech models from how the training targets are obtained. We
generalize the targets extractor into Offline Targets Extrac-
tor (Off-TE) and Online Targets Extractor (On-TE). Based on
this, we propose a new multi-tasking learning framework for
self-supervised learning, MT4SSL, which stands for Boosting
Self-Supervised Speech Representation Learning by Integrat-
ing Multiple Targets. MT4SSL uses the K-means algorithm as
an Off-TE and a teacher network without gradients as an On-
TE, respectively. Our model outperforms previous SSL meth-
ods by nontrivial margins on the LibriSpeech benchmark, and
is comparable to or even better than the best-performing mod-
els with fewer data. Furthermore, we find that using both Off-
TE and On-TE results in better convergence in the pre-training
phase. With both effectiveness and efficiency, we think do-
ing multi-task learning on self-supervised speech models from
our perspective is a promising trend. Code is available at
https://github.com/ddlBoJack/MT4SSL.
Index Terms: self-supervised learning, representation learning,
multi-task learning, speech recognition

1. Introduction
Self-supervised learning (SSL) has achieved remarkable suc-

cess in the field of representation learning, applied in computer
vision [1, 2], natural language processing [3, 4], as well as
speech processing [5, 6]. For speech representation learning,
SSL methods are often used in the pre-training phase to obtain
supervisory signals from massive unlabeled audio data.

A core challenge for SSL is to obtain high-quality self-
learning targets. Early works directly use input audio as train-
ing targets, either contrasting positive samples with negative
ones [7, 8], or reconstructing the raw waves [9] and acous-
tic features [10, 11]. Contemporary works explore many other
ways to accomplish this goal, including quantization by quan-
tizers [12, 5], clustering by the K-means algorithm [6, 13], and
generation by models [14].

In this work, we uniformly refer to the targets extraction
module as the Targets Extractor (TE). Intuitively, we find that
all TEs used in SSL models can be easily divided into two cat-
egories:
• Offline Targets Extractor (Off-TE). Off-TE is trained in ad-

vance, or is an off-the-shelf algorithm. Off-TE will not be
updated in the self-supervised pre-training phase.

• Online Targets Extractor (On-TE). On-TE can be trained in
advance, or randomly initialized. On-TE will be continuously
updated during the pre-training process.

Corresponding author∗.

It is obvious that targets from Off-TEs are more coarse-grained,
and models using Off-TEs are easier to train. While On-TEs
provide finer-and-finer-grained targets during training like cur-
riculum learning does. Models with On-TEs might get bet-
ter performance [14]. Another observation is that there is a
clear complementarity on SUPERB1 between HuBERT using
Off-TE and data2vec using On-TE. Data2vec excels at content-
related tasks, while HuBERT works better on speaker-related
tasks. Therefore, we hope that both TEs can work together in a
multi-task learning framework.

We present MT4SSL, short for Multiple Targets for Self-
Supervised Learning, to optimize the model with targets ex-
tracted from Offline Targets Extractor (Off-TE) and targets ex-
tracted from Online Targets Extractor (On-TE) simultaneously.
Our design is similar to adopt the state-of-the-art models Hu-
BERT [6] and data2vec [14]. Actually, any two or more models
using Off-TEs and On-TEs can be integrated into this frame-
work. We conduct experiments on the LibriSpeech bench-
mark [15]. With 360 hours of unlabeled data, Our model
achieves an average of 10% relative WER reduction over the
best-performing HuBERT and data2vec on the 1-hour, 10-hour,
and 100-hour fine-tuning subsets, and is comparable to or even
better than wav2vec 2.0, HuBERT, and WavLM pre-trained
with more data on the LibriSpeech 960h dataset. Furthermore,
we find that MT4SSL can significantly speed up the conver-
gence in the pre-training phase. The main contributions of this
paper can be summarized as three-fold:
1. We provide a new perspective on self-supervised speech

models from how the self-training targets are obtained, and
generalize the Targets Extractor (TE) into Offline Targets
Extractor (Off-TE) and Online Targets Extractor (On-TE).

2. We propose MT4SSL, a new multi-task learning framework
that equips the model with both Off-TE and On-TE. We
pre-train the model with targets extracted by both TEs and
achieve better results than either alone on the LibriSpeech
benchmark.

3. We find that MT4SSL has good convergence. Compared
with other models, relatively low WER on the speech recog-
nition task can be obtained with only a few pre-training
steps. We give a possible explanation for the good perfor-
mance and convergence. We hope our findings could inspire
researchers to develop more powerful self-supervised meth-
ods in the speech community.

2. Related Works
In this section, we introduce the progress of two key technolo-
gies in MT4SSL, including self-supervised learning (SSL) and

1https://superbbenchmark.org/leaderboard
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multi-task learning (MTL).

2.1. SSL on Speech Representation Learning

Self-supervised pre-training followed by supervised fine-tuning
becomes a mainstream approach for speech representation
learning. This training paradigm has been shown to obtain
universal representations on a wide variety of speech down-
stream tasks [16]. Traditional categorization is to divide self-
supervised methods into 1) contrastive learning, 2) predictive
learning and 3) generative learning based on the pretext tasks.
Contrastive learning aims to distinguish positive samples from
negative ones. CPC [7] is the first successful representation
learning approach for speech using contrastive learning, max-
imizing the mutual information between the input signal and
the learned latent variables. Works that follow this paradigm
include wav2vec [8], vq-wav2vec [12] and wav2vec 2.0 [5].
Predictive learning aims to predict the pre-clustered or model-
generated targets with the input representations. HuBERT [6]
predicts the discrete targets clustered by the K-means algorithm
of the masked regions with a BERT-like method. To learn
better representations, WavLM [13] polishes HuBERT by em-
ploying gated relative position bias and utterance mixing train-
ing strategy. ILS-SSL [17] promotes HuBERT by adding an
additional loss on the intermediate layers. PBERT [18] and
HuBERT-AP [19] refine HuBERT by refining target quality.
Another predictive method is data2vec [14], which generates
high-quality targets for masked positions with a teacher model
fed the same utterance. Generative learning aims to reconstruct
the whole speech from latent variables with an auto-encoding
model. These works focus on recovering discrete [20] or contin-
uous [21] speech signals using a variational autoencoder (VAE)
or Seq2Seq autoencoder (SA) model to obtain representations
of speech. Works that follow this paradigm include autoregres-
sive models [9, 22] and non-autoregressive models [10, 11].

2.2. MTL for Speech Representation Learning

There have been some works on MTL for speech representa-
tion learning. Early works enumerate as many self-supervised
tasks as possible empirically to conduct MTL. PASE [23] and
PASE+ [24] solve many self-supervised tasks, such as wave-
form generation and prosody regression. Some concurrent
works solve the problem with different pretext tasks. W2v-
BERT [25] combines contrastive learning and mask language
modeling to improve speech representation ability. They use
the same targets extractor (quantizer) to obtain targets for dif-
ferent pretext tasks. UniSpeech [26] combines self-supervised
learning and supervised learning to improve ASR performance.
TESSP [27] and SpeechLM [28] enhance the representation
ability of speech by introducing the mask language modeling
task with paired or unpaired speech-text data.

3. Method

The overall architecture of MT4SSL is shown in Figure 1. For
the backbone network, we simply use the same architecture as
mainstream baseline models [5, 6, 14], which contains an en-
coder network and a context network. For the Target Extractor,
we use the K-means algorithm as an Off-TE as HuBERT does,
and use a teacher network without gradients as an On-TE as
data2vec does.

Context Network

Encoder Network

Online Targets 
Extractor

Offline Targets
Extractor

Update

Offline TE Loss Online TE Loss

MASK

sg //// sg

Figure 1: The overall framework of MT4SSL. The backbone of
the model consists of an encoder network and a context net-
work. The core of the framework is to optimize the model with
multiple types of targets extracted from Off-TE and On-TE. sg
means stop-gradient.

3.1. Backbone Network

The encoder network is a 7-layer 1-D convolutional neu-
ral network with kernel sizes (5, 2, 2, 2, 2, 2, 2) and strides
(10, 3, 3, 3, 3, 2, 2). Given the raw audio input X at a 16000 Hz
sample rate, we downsample the audio with the encoder net-
work denoted with f : X 7→ H. The output representations
H are 50 Hz with dimension 512. Then we apply a linear pro-
jection for dimension transformation from 512 to 768, followed
by the mask matrix to construct the input of the context net-
work, denoted with m : H 7→ H̃. The context network is a
12-layer standard Transformer with learnable convolutional po-
sitional encoding. Each Transformer block is set to 768 model
dimension, 3072 inner dimension, and 12 attention heads. The
context network can be denoted with g : H̃ 7→ Z . The final out-
put Z of the backbone is used for classification and regression,
which will be detailed in Section 3.2 and Section 3.3.

3.2. Offline Targets Extractor

The model parameters of Offline Targets Extractor (Off-TE)
do not update during the pre-training phase. Here we use the
K-means algorithm as the Off-TE. We train a model with the
K-means algorithm before pre-training. The model transforms
speech features into C clusters. Thus we use the indices of clus-
ter centers to represent each speech token. Suppose X is a raw
audio utterance sampled from X , the offline targets can be ob-
tained by:

Y f = TEf (X), (1)

where TEf (·) is the extracting operation, and Y f =

[yf
1 , · · · , yf

T ]
T is the self-training offline targets and yf

t ∈ RC

in a one-hot form. Suppose Z = [z1, · · · , zT ]T is a masked
version obtained through the backbone network from the same
raw audio X . M ⊂ [T ] denote the masked indices, and zt is
replaced with a mask token if t ∈ M . We use a projection layer
for dimension transformation, which can be written as:

Zf = WfZ, (2)

where Zf = [zf1 , · · · , zfT ]T and zft ∈ RC . The offline TE loss
is defined as:

Lf = CE(Zf , Y f ), (3)

where CE(·) computes the cross entropy loss between sources
and targets.
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3.3. Online Targets Extractor

The model parameters of Online Targets Extractor (On-TE)
update continuously during the pre-training phase. We use a
teacher network without gradients as the On-TE to obtain on-
line targets. This process can be viewed as a special kind of
knowledge distillation [29], or Noisy Student Training (NST)
[30]. Suppose H is the hidden representation sampled from H,
which is obtained from X followed by convolutional subsam-
pling, the online targets can be obtained by:

Y n = TEn(H), (4)

where TEn(·) is the extracting operation, and Y n =
[yn

1 , · · · , yn
T ]

T is the self-training targets. As with offline
speech tokens, we use a projection layer for dimension trans-
formation, which can be written as:

Zn = WnZ, (5)

where Zn has the same dimension as Y n. The online TE loss
is defined as:

Ln = MSE(Zn, Y n), (6)

where MSE(·) measures the mean squared error between
sources and targets. The parameters of the teacher network
∆ are initialized with the parameters of the backbone network
θ, and the parameters of the teacher network are updated with
exponentially moving average (EMA) [29] within each mini-
batch, donated as:

∆ = τ∆+ (1− τ)θ, (7)

where τ is a parameter that increases linearly during pre-
training.

3.4. Loss Function

The core of our model is to integrate multiple targets, thereby
enhancing the representational ability of self-supervised learn-
ing. The proposed objective is formulated as follows by using
both offline TE loss in Eq. 3 and online TE loss in Eq. 6:

L = Lf + αLn, (8)

with a tunable parameter α. Note that we only compute loss on
the masked parts of the utterance.

4. Experiments
4.1. Dataset

For unsupervised pre-training, we use LibriSpeech [15] corpus
with 360-hour unlabeled data (train-clean-360). For supervised
fine-tuning, 1-hour, 10-hour splits from Libri-light [31] corpus
and 100-hour from LibriSpeech corpus are considered. We con-
duct model evaluation according to the mainstream test sets:
dev-clean/other and test-clean/other from the LibriSpeech cor-
pus.

4.2. Setup

Our MT4SSL model can be considered as a simplification and
fusion of the HuBERT model and the data2vec model, so we
maximized the inheritance of the hyperparameters of both to
demonstrate the effectiveness of the model. Given the limited
computing resources, we simply choose some empirical config-
uration for the training of MT4SSL model without conducting
extensive hyperparameter search.

Model
Language

Model

WER%(↓)
dev test

clean other clean other
1-hour Labeled Data
HuBERT

None
29.4 37.1 30.0 37.8

data2vec 24.1 32.6 24.2 33.5
MT4SSL 19.7 27.1 20.1 27.6
HuBERT

4-gram
7.2 16.5 7.9 17.3

data2vec 6.8 15.8 7.2 17.0
MT4SSL 5.5 13.1 5.9 13.9
10-hour Labeled Data
HuBERT

None
11.4 21.3 11.6 22.5

data2vec 10.8 20.9 10.7 21.9
MT4SSL 9.4 18.0 9.3 18.5
HuBERT

4-gram
4.9 12.7 5.3 13.4

data2vec 5.1 13.8 5.5 14.5
MT4SSL 4.0 11.4 4.5 11.9
100-hour Labeled Data
HuBERT

None
5.8 15.5 6.0 15.3

data2vec 5.5 15.7 5.6 16.0
MT4SSL 5.1 14.3 5.1 14.3
HuBERT

4-gram
2.9 9.6 3.5 9.9

data2vec 3.0 10.6 3.6 11.2
MT4SSL 2.7 9.6 3.4 9.6

Table 1: Word error rate (WER) on LibriSpeech corpus. We
compare the performance on four subsets (dev-clean, dev-other,
test-clean, test-other) with (4-gram) and without (None) lan-
guage model pre-trained on 360 hours of unlabeled data (train-
clean-360) and fine-tuned on different amounts of labeled data
(1h, 10h, 100h).

Model Unlabeled
Data

WER%(↓)
dev test

clean other clean other
1-hour Labeled Data
wav2vec 2.0[5] LS-960 24.1 29.6 24.5 29.7
HuBERT[6] LS-960 24.3 30.2 20.9 27.5
WavLM[13] LS-960 - - 24.5 29.2
MT4SSL LS-360 19.7 27.1 20.1 27.6
10-hour Labeled Data
wav2vec 2.0[5] LS-960 10.9 17.4 11.1 17.6
HuBERT[6] LS-960 12.0 18.1 10.1 16.8
WavLM[13] LS-960 - - 9.8 16.0
MT4SSL LS-360 9.4 18.0 9.3 18.5
100-hour Labeled Data
wav2vec 2.0[5] LS-960 6.1 13.5 6.1 13.3
HuBERT[6] LS-960 5.5 13.0 6.3 13.2
WavLM[13] LS-960 - - 5.7 12.0
MT4SSL LS-360 5.1 14.3 5.1 14.3

Table 2: Word error rate (WER) on LibriSpeech corpus. The
results for wav2vec 2.0 and WavLM are obtained from their pa-
pers. The results for HuBERT are obtained by fine-tuning their
public released model 2. All results are reported without the
language model.

Pre-Training. In the pre-training phase, we train the model
with 360 hours LibriSpeech unlabeled data. The training is con-
ducted on NVIDIA GeForce RTX 3090 GPUs, and we simulate
16 GPUs by using k GPUs and setting update frequency with

2https://github.com/facebookresearch/fairseq/
tree/main/examples/hubert
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16/k. k is set to 4 in this paper. For the mask strategy, each time
step has a probability of p = 0.065 to be the starting index and
the subsequent l = 10 time-steps are masked. This results in the
mask embedding covering 49% of all tokens on average. For
the optimizing strategy, we use Adam [32] with a learning rate
of 0.0005 and a weight decay of 0.01. We train MT4SSL for
800 epoch, with [3%, 90%, 7%] proportion of warm-up, hold-
on, and linearly decay. The hyperparameter α that controls the
loss weight is set to 1, which means the two losses have the
same weight.

For the offline targets, we obtain features from HuBERT
model and train an Off-TE before pre-training. Concretely, the
targets are obtained by running the K-means clustering with 500
clusters on the 6-th transformer layer output of the first iteration
HuBERT model.

For the online targets, we use the average of the top 8
blocks of the transformer layer outputs from the teacher net-
work as data2vec model designs. For the parameter update of
the teacher model, we apply a linearly increasing strategy for τ
from τs = 0.99 to τe = 0.999 for the first 7.5% training steps.
The parameter τ is kept constant for the remainder of training
steps.

Fine-Tuning. In the fine-tuning phase, we use Connection-
ist Temporal Classification (CTC) [33] loss to keep consistent
with the baseline models. The hyper-parameters of the fine-
tuning stage are still kept consistent with the mainstream mod-
els [5, 6, 14].

4.3. Results

Tabel 1 shows results of the MT4SSL on the LibriSpeech
benchmark compared to other state-of-the-art models. The
models are pre-trained on LibriSpeech 360 hours dataset (train-
clean-360), and fine-tuned on Libri-light 1-hour, 10-hour and
LibriSpeech 100-hour subsets. We compare the performance
on dev-clean/other and test/other with and without the language
model, respectively. We adopt the 4-gram language model
trained on the official LibriSpeech language modeling data.
Given 10 hours of labeled data, MT4SSL can achieve 13.0%
(dev-clean), 13.9% (dev-other), 13.1% (test-clean) and 15.5%
(test-other) relative WER reduction over the best-performing
model without a language model, and 18.4% (dev-clean),
10.2% (dev-other), 15.1% (test-clean) and 11.2% (test-other)
relative WER reduction with a 4-gram language model. For the
fine-tuning on 1-hour and 100-hour labeled data, the improve-
ments are consistent for the MT4SSL over other models.

Table 2 shows results of MT4SSL trained with 360 hours of
audio data, compared to the state-of-the-art models trained with
960 hours. We compare results of MT4SSL with wav2vec 2.0
and WavLM from their papers, and HuBERT from their public
released page. Despite using less data, our model is comparable
to or even better than the state-of-the-art models. The perfor-
mance on noisy subsets is less competitive, and one possible
explanation is that our pre-training data (train-clean-360) only
consists of clean audio.

4.4. Convergence Analysis

In this section, we analyze our MT4SSL in terms of model con-
vergence quantitatively and qualitatively. All experiments are
carried out with the following configuration: all the models are
pre-trained on 360 hours of LibriSpeech unlabeled data, fine-
tuned on 10 hours of Libri-light labeled data, and evaluated on
dev-other subset of LibriSpeech corpus.

We find that MT4SSL not only achieves amazing results on
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Figure 2: Word error rate (WER) along with pre-training epochs
among different SSL models. The models are fine-tuned on
10-hour labeled data and evaluated on LibriSpeech dev-other
dataset without adpoting the language model.

the benchmark, but also exhibits good convergence. As shown
in Figure 2, we plot the WER trend with respect to the number
of pre-training epochs. By comparing MT4SSL with data2vec
and HuBERT, it can be seen that HuBERT which utilizes of-
fline targets has better convergence than data2vec which utilizes
online targets. However, data2vec achieves better performance
than HuBERT when fully trained. MT4SSL combines their ad-
vantages and converges to a relatively low WER quickly.

One possible explanation is that the fixed offline targets
are less difficult to learn for the model to learn than the ever-
changing online targets. Hence, the model which adopts offline
targets converges faster. However, the online targets have finer
granularity than the offline targets, so the model which uses on-
line targets has better representation capabilities. The learning
of the two targets may not be conflicting but cooperative, so
MT4SSL can achieve both efficiency and effectiveness.

5. Discussion
In this work, a preliminary attempt to combine Off-TE using
the K-means algorithm and On-TE using a randomly initialized
teacher has yielded good results. There are several interesting
aspects to explore:

• Will there be On-TEs and Off-TEs that cooperate better?
• Will using different targets extractors at different stages of

pre-training improve efficiency, effectiveness, or both?
• Is MTL in SSL a better way to obtain universal features in

various speech-related downstream tasks?

We will research the above problems in the future.

6. Conclusion
In this paper, we present a new framework for speech-based
self-supervised learning, which is named MT4SSL, by simulta-
neously optimizing the model with offline targets and online tar-
gets, without caring about specific pretext tasks. The proposed
method improves both performance and convergence upon the
state-of-the-art models.
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