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Abstract
In pursuit of high inference speed, many non-autoregressive
neural text-to-speech (TTS) models have been proposed for par-
allel speech synthesis recently. A critical challenge of parallel
speech generation lies in the learning of text-speech alignment.
Existing methods usually require an external aligner for guid-
ance or involve complex training process. In this work, we pro-
pose Eden-TTS, a simple and efficient parallel TTS architecture
which jointly learns duration prediction, text-speech alignment
and speech generation in a single fully-differentiable model.
The alignment is learned implicitly in our architecture. A novel
energy-modulated attention mechanism is proposed for align-
ment guidance which leads to fast and stable convergence of
our model. Our model can be easily implemented and trained.
Experiments demonstrate that our method can generate speech
of high quality with high training efficiency.
Index Terms: Text To Speech, Non-autoregressive Speech
Synthesis, Text-Speech Alignment, Guided Attention

1. Introduction
Text-to-speech (TTS) systems based on neural network have
seen rapid development in recent years. Many popular neural
TTS systems use melspectrogram (mel) as their learning tar-
get, which is then sent to a separately trained vocoder such as
wavenet [1], waveRNN [2], WaveGlow [3], hifigan [4] and so
forth to synthesize waveform. Although autoregressive models
such as tacotron [5], tacotron2 [6], Deep Voice [7], Transformer
TTS [8] can produce speech with good quality for in-domain
texts, these methods usually suffer from slow inference speed
and robustness issues such as missing and repeated words es-
pecially in long utterances [9]. To increase the synthesis speed,
many efforts have been put on the parallel speech prediction
recently [9–19]. The main challenge for parallel speech pre-
diction lies in the learning of alignment between input text and
output speech. Once the alignment is known, a feed-forward
decoder can be readily used to do the parallel prediction with
aligned features. Many brilliant methods have been proposed
for the task. These methods can be roughly categorized into
two groups. The first group of methods [9–12, 20] use exter-
nal aligners such as pre-trained autoregressive models [6, 8, 21]
or Montreal Forced Aligner [22] for alignment guidance. This
kind of methods have several limitations. In real scenarios, the
external aligner can be unavailable, training an aligner and ex-
tracting the alignments from it can be time-consuming, mean-
while the extracted alignments can be sub-optimal. The sec-
ond group of methods [13–19, 23] jointly learn the alignment
and speech prediction without an external aligner. Methods
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in [13, 14, 23] construct the alignments only based on the pre-
diction of phonemes, their training is not very efficient and sta-
ble. Methods in [15–18] build their models by first considering
all possible monotonic text-mel alignments and then extract the
most probable one via an independent search algorithm. These
methods preclude differentiation and usually require a sched-
uled training process. EF-TTS [19] utilizes index mapping vec-
tor (IMV) for efficient alignment modeling. It jointly learns the
speech generation and alignment through a single network, thus
it is easier to apply than its counterpart models. However, this
method is not very good at long-sequence alignment learning,
though it introduces a way to alleviate the problem.

In this work, inspired by the close relationship between text
duration and text-mel alignment, we propose a simple and effi-
cient non-autoregressive architecture for speech synthesis. Ex-
periments on the LJSpeech dataset [24] show that our method
can synthesize high-quality speech with high training efficiency.
Our contribution is summarized as below:
• A simple fully differentiable feed-forward TTS architecture

that can jointly learn duration prediction, sequence alignment
and speech prediction without introducing additional align-
ment targets.

• A novel energy-modulated attention mechanism that can
guide monotonic alignment learning. The direct modulation
on the energy of the text-mel alignment plays an important
role for the fast convergence of our model.

• The proposed method can produce high-quality speech with
much easier implementation and simpler training procedure
than most existing methods, which can ease the application
of neural TTS in real scenarios.

Our source code1 and synthesized audio samples2 are pub-
licly available.

2. Proposed Method
In TTS scenario, input token durations and text-speech align-
ment are closely related. Most existing parallel TTS models
rely on durations for alignment during inference. Inspired by
this fact, we propose a collaborative duration-alignment learn-
ing process: first compute initial alignment with monotonic
guidance from text and speech features, then calculate token du-
rations from the guided alignment, finally construct monotonic
alignment with durations for speech prediction. The text-speech
alignment, duration and speech prediction are learned collabo-
ratively in the process. We will first introduce the architecture
and learning procedure of proposed method, then go through
each component of the architecture in detail.

1Code: https://github.com/younengma/eden-tts
2Audio examples: https://edenynm.github.io/edentts-demo/
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Figure 1: Architecture of proposed Eden-TTS. (a) depicts the overall architecture. Only the yellow components on the left are used
during inference. The blue components on the right are needed only in the training phase. (b) shows the architecture of Mel Encoder.
(c) depicts the architecture of Text Encoder.

2.1. Architecture

The overall architecture of Eden-TTS is depicted in Figure 1(a).
In the training phase, text encoder encodes text token sequence
as hidden features and mel encoder processes the melspectro-
gram to output its corresponding hidden representations. Then
the guided aligner computes a proper initial alignment between
text and mel features, from which token durations are extracted
by the duration extractor. The extracted durations serve as
targets for the training of duration predictor. Afterwards, the
monotonic aligner constructs a hard text-mel alignment from
durations and computes time-aligned text features. Finally, the
aligned-features are sent to the decoder for speech prediction.

In the inference stage, the duration predictor predicts to-
ken durations from encoded text features. Monotonic aligner
constructs alignments based on the predicted durations and out-
puts time-aligned features, which are then used for mel predic-
tion. Only yellow components on the left are needed during
inference. Blue components on the right are needed only in the
training phase.

2.2. Text and Mel Encoder

The text encoder is depicted in Figure 1(c). It comprises of an
embedding layer, followed by a linear layer, a stack of Feed-
Forward Transformer (FFT) blocks and a linear layer at last.
We use the same FFT block in [9] which consists of a self-
attention and 1D convolutional network. The self-attention net-
work consists of a multi-head attention to extract the cross-
position information. The text encoder processes the token se-
quence x = (x0, x1, ..., xN−1) of length N as its correspond-
ing hidden representations: h = (h0, h1, ..., hN−1).

The mel encoder as shown in Figure 1(b) processes the mel-
spectrogram of length T and outputs its corresponding hidden
representations: m = (m0,m1, ...,mT−1). It has a linear layer
at bottom followed by several blocks of CNN which consists of

a convolution layer with leaky relu as activation function with
a residual connection. Weight normalization [25] is applied on
the convolution layer.

2.3. Guided Aligner

The guided aligner serves to provide a proper initial text-speech
alignment during training, from which token durations are to be
obtained. The scaled-dot product attention [26] can be utilized:

αn,t =
e−(hn·mt)/

√
D

∑N−1
i=0 e−(hi·mt)/

√
D

(1)

where m and h are the encoded features of melspectrogram and
text respectively, D is their dimensionality. In TTS scenario, the
alignment between text and speech is desired to be monotonic
and surjective. In other words, α should have larger values near
the diagonal and small values off the diagonal. Token durations
and alignment are closely related. As the scaled-dot attention
has no constraint on the alignment, it can be hard for the dura-
tion extractor to obtain reasonable token durations from it. The
idea to guide the attention to be monotonic has been proved ef-
fective in [27] by introducing a guided loss function and in [18]
using a diagonal prior for attention matrix. However, we found
using the guided loss not helpful in our experiments, possibly
because the constraint of guided loss is not strong enough for
efficient learning in our architecture. Introducing a prior on the
attention matrix is not suitable either, as it affects latter duration
extraction and precludes differentiation.

Inspired by the fact that alignment score αn,t is essentially
determined by its corresponding energy hn · mt, we propose
to modulate the energy term by directly multiplying it with a
proper weight:

αn,t =
e−(wn,thn·mt)/

√
D

∑N−1
i=0 e−(wi,thi·mt)/

√
D

(2)
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where:
wn,t = e−(n/(N−1)−t/(T−1))2/(2g2) (3)

where g is a hyper-parameter used to control the diagonal form
of w and is set as 0.2 in this paper. Figure 2(a) depicts the
values of the weight matrix w. As the values of w are large
near the diagonal and small off the diagonal, the off-diagonal
energies will be penalized and near-diagonal energies are kept
almost intact, forcing the attention to be of similar form. We
believe other weight schemes can also be applied as long as
their weights have similar diagonal distribution. Simple as it it,
our method can directly constrain the alignment during training,
therefore much more efficient than the guided loss [27]. When
the training has converged, the guided alignment between text
and speech is almost monotonic as shown in Figure 2(b), and
even near monotonic after removing energy weight as shown in
Figure 2(c), which indicates that the guided aligner has learned
to produce near-monotonic alignment. Based on the guided
alignment, monotonic alignment can be obtained as shown in
Figure 2(d).

2.4. Duration Extractor and Predictor

The duration of each token is usually defined as the number of
melspectrograms attended to it [9]. However, as the compu-
tation in [9] precludes differentiation, it is not suitable in our
architecture. We adopt a different method which can lead to
similar results. The duration extractor computes the duration of
each token by summing its alignment scores with speech fea-
tures:

dn =

T−1∑

i=0

αn,i, n = 0, 1, ..., N − 1 (4)

where dn is the duration of nth token. It should be noted that to
make the above computation reasonable, the alignment should
be monotonic (or close to monotonic at least) which is achieved
by alignment guidance and the full differentiability of our archi-
tecture. The durations are used as the learning targets of the du-
ration predictor during training. The duration predictor stacked
on the text encoder has the same architecture as fastspeech [9].
It consists of 2 convolutions with relu activation, each followed
by the layer normalization, a linear layer at last to output the
duration in logarithmic domain as ln d̂. The duration loss is
defined as:

Ldur =
1

N

N−1∑

n=0

| ln dn − ln d̂n| (5)

2.5. Monotonic Aligner

The monotonic aligner first constructs the monotonic text-mel
alignment from durations, then computes the time-aligned text
features for the decoder. We use the method proposed in [23]
for monotonic computation. Firstly, the end positions of each
token are computed: en =

∑n
i=0 di and the center positions:

cn = en − 0.5dn. Then monotonic alignment is calculated by:

βt,n =
e−σ−2(t−cn)2

∑N−1
i=0 e−σ−2(t−ci)2

(6)

where σ−2 is set as 0.2 in the paper. Finally, time-aligned text
representations are computed:

γt =

N−1∑

n=0

βt,nhn, t = 0, ..., T − 1 (7)

Figure 2: Visualization of alignment attention matrices when
the training has converged. The vertical axis represents text
tokens from bottom to top. The horizontal axis denotes mel-
frames from left to right. (a) depicts the energy weight matrix.
(b) shows the guided alignment when the model has converged.
(c) depicts the guided alignment computed without energy mod-
ulation when the model has converged. (d) shows the monotonic
alignment computed from the guided alignment.

2.6. Decoder

The decoder processes the aligned text features and output mel-
spectrogram. It comprises of a linear layer at the beginning,
followed by several CNN blocks same as that in mel encoder,
a linear layer to output melspectrogram and a tacotron2-style
postnet [6] at last. While we use the CNN-based decoder for
simplicity and efficiency, other popular decoder models such as
transformer-based decoder in [9], or flow-based decoder in [15]
may also be applied in the architecture. The loss for melspec-
trogram prediction is defined as: Lmel = (mel − m̂el)2 and
the final loss for our model is the sum of duration loss and mel
loss: Ltol = Lmel + Ldur .

Note that all the calculations in our architecture are differ-
entiable. Compared with the counterpart model EF-TTS [19],
our formulation is much simpler, therefore easier to implement.
EF-TTS proposes IMV for monotonic alignment learning. It
involves a complex process to obtain relative positions which
are comparable to token durations. Eden-TTS computes the to-
ken durations by a simple summation on the guided alignment,
which is much more straightforward and simpler.

3. Experiments

3.1. Dataset

We conduct all our experiments on the LJSpeech dataset [24],
which consists of 13,100 short audio clips with a total duration
of approximately 24 hours. 500 samples are used for testing,
100 for validation and the rest for training. We use charac-
ters as input tokens, which involves more challenging alignment
learning than using phonemes because the character sequence is
much longer than the phoneme sequence for the same sentence.
We normalize the texts with a space character at the beginning
and a period character at the end, e.g. ”I have 5 dollars” is pro-
cessed as ” I have five dollars.”. Melspectrogram is computed
the same way as hifigan [4].
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3.2. Experimental Settings

For text encoder, we use 6 FFT blocks with settings same as [9].
The token embedding size of embedding layer in text encoder is
set as 512. The number of CNN blocks in mel encoder, decoder
are set as 3, 6 respectively. The kernel size and hidden size
of CNN blocks are all set as 5, 512 respectively. Dropout rate
of CNN layer is all set as 0.1. The duration predictor has a
dimension of 256, kernel size of 3.

We compare our model with Glow-TTS [15] which adopts
a monotonic search algorithm for alignment learning and shows
very good performance, tacotron2 [6] which is the best pub-
licly available autoregressive TTS model, and the end-to-end
differentiable EF-TTS [19] which is most comparable to our
method. We use the official released models of tacotron23 and
glow-TTS4. For a fare comparison, we implement EF-TTS and
Eden-TTS with the same model settings, which means the only
difference between them lies in the alignment learning module.
We use hifigan [4] as vocoder to synthesize waveform from mel-
spectrogram. We use the open-source model of hifigan 5 with
v1 configuration. All the models are trained on a single Telsa
V100 GPU with batch size of 96. The Adam optimizer is used
with learning rate of 10−4.

3.3. Training

Our model can be trained easily due to its full differentiability.
Note that energy weights used by the guided aligner only need
to be calculated once in the data preparation stage, which will
not add training time. Figure 3 shows the mel loss of EF-TTS
and Eden-TTS at different training steps. Obviously, Eden-TTS
converges faster and reaches a lower mel loss bound than EF-
TTS. The training of Eden-TTS can stop at around 150k for
satisfactory performance. Meanwhile, as Eden-TTS’ alignment
module is much simpler than the EF-TTS, it costs around 6%
less time at each training step compared with EF-TTS. It takes
less than 50% training time of EF-TTS to reach EF-TTS’ lowest
loss bound. Therefore, our method is much more efficient than
EF-TTS.
In our ablation study, we find that the stability and fast conver-
gence have much relevance to the energy-modulated attention.
As can be seen in Figure 3, if we replace the energy-modulated
attention with regular scaled-dot attention [26] (Eden w/o en-
ergy weight) or if we replace it with regular scaled-dot attention
together with a guided loss [27] (Eden with guided loss), the
training becomes less efficient with loss curves of larger fluctu-
ation and much higher loss bound.

3.4. Evaluation

Voice Quality: We use the text transcripts in the testset to syn-
thesize speech with models tacotron2 [6], Glow-TTS [15], EF-
TTS [19] and Eden-TTS. Model-generated audios and audios
synthesized from ground-truth (GT) melspectrogram are rated
together by 20 people specialized in English. The 9-scale Mean
Opinion Score (MOS) is shown in Table 1. As can be seen from
the table, our method can generate better speech than its coun-
terpart parallel models. Though tacotron2 is rated with higher
score on the random-chosen test samples, it is not as robust as
the parallel models. It can suffer from pronunciation issues for
longer sentences while the parallel models don’t have this prob-
lem [9], [15].

3https://github.com/NVIDIA/tacotron2
4https://github.com/jaywalnut310/glow-tts
5https://github.com/jik876/hifi-gan

Figure 3: Mel loss of different methods under same experimen-
tal settings. “Eden w/o energy weight” means removing the en-
ergy weight in Equation 2 in the guided aligner, namely using
the scaled-dot attention to replace the guided aligner. “Eden
with guided loss” means using scaled-dot attention applied with
guided loss [27] to replace the guided aligner.

Table 1: The comparison of 9-scale MOS with 95% confidence
intervals and time cost

Methods MOS Time Cost(s)

GT 4.55± 0.13 -
Tacotron2 [6] 4.47± 0.08 0.8889
Glow-TTS [15] 4.09± 0.14 0.0644
EF-TTS [19] 4.02± 0.12 0.0633
Eden-TTS 4.32± 0.08 0.0636

Inference Speed: The inference time for the melspectro-
gram generation of one sentence corresponding to 8.7-seconds
ground-truth audio on PC with NVIDIA GPU RTX-2070 is
shown in Table 1. We ran the inference 20 times and then took
the average inference time. As can be seen in the table, our
model’s inference speed is comparable to EF-TTS and glow-
TTS. It is more than 13.9 times faster than tacotron2.
Controllability: As Eden-TTS uses durations for alignment, it
can control the voice speed and part of the prosody by adjusting
the input token durations just like [15], [19]. Audio examples of
speed control by multiplying a positive scalar value across the
predicted token durations are provided in demo page2. As you
can find in the samples, Eden-TTS can adjust the voice speed
rate from 0.8x to 1.6x smoothly.

4. Conclusions
We propose Eden-TTS, an efficient non-autoregressive TTS ar-
chitecture that can jointly learn text-mel alignment, duration
prediction, and speech generation in a single model. It can syn-
thesize high-quality speech with much easier implementation
and simpler training procedure than its counterparts. We pro-
pose a simple energy-modulated attention mechanism for align-
ment guidance which is the key to stable, fast convergence of
our model. Our work can ease the application of parallel speech
generation in real scenarios.
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