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Abstract

Real-world complex acoustic environments especially the ones
with a low signal-to-noise ratio (SNR) will bring tremendous
challenges to a keyword spotting (KWS) system. Inspired by
the recent advances of neural speech enhancement and context
bias in speech recognition, we propose a robust audio context
bias based DCCRN-KWS model to address this challenge. We
form the whole architecture as a multi-task learning framework
for both denoising and keyword spotting, where the DCCRN
encoder is connected with the KWS model. Helped with the
denoising task, we further introduce an audio context bias mod-
ule to leverage the real keyword samples and bias the network
to better discriminate keywords in noisy conditions. Feature
merge and complex context linear modules are also introduced
to strengthen such discrimination and to effectively leverage
contextual information respectively. Experiments on an inter-
nal challenging dataset and the HIMIYA public dataset show
that DCCRN-KWS is superior in performance, while the abla-
tion study demonstrates the good design of the whole model.
Index Terms: Speech enhancement, keyword spotting, audio
context bias, DCCRN-KWS

1. Introduction
Keyword Spotting (KWS) is a task to detect whether the in-
put speech signal contains preset keywords. Accordingly, as a
typical KWS task, wake-up word (WuW) detection is the first
step in voice interaction between the user and smart devices [1].
However, there is usually a certain interaction distance between
the user and the device, whereas speech signal decay, environ-
mental noise, and room reverberation will seriously affect the
performance of the system.

To improve speech quality, a signal enhancement front-end
is usually adopted. When multi-channel signals can be collected
from a microphone array, beamforming or multi-channel signal
enhancement technologies can be adopted. Traditional signal
processing based speech enhancement methods usually apply
a spectral suppression gain (or filter) to the noisy signal un-
der the statistical signal processing theory [2]. With the help
of deep learning (DL), speech enhancement has been recently
formulated as a supervised learning problem and has become
the mainstream because of their strong noise reduction abili-
ties (especially for non-stationary noise) learned from simulated
clean-noisy speech pairs [3, 4]. More recently, advanced net-
work structures such as SDD-Net [5] and DCCRN [6], which
explicitly model the complex spectrum of speech with partic-
ularly designed optimization metrics, have shown outstanding
performance in recent noise suppression challenges [7, 8].

* Equal contribution. † Lei Xie is the corresponding author.

The advances of neural speech enhancement have triggered
its downstream applications in speech recognition [9]. The
front-end speech enhancement module can be optimized inde-
pendently in prior [10] or jointly with the acoustic model [11]
to improve the noise robustness of ASR. In [12], the architec-
ture of deep complex Unet (DCUnet) [12] is incorporated with a
multichannel acoustic model by multi-task learning. The advan-
tages of front- and back-end integration can be directly applied
to KWS which specifically aims to recognize predefined key-
words [13]. However, specifically for the KWS task, while con-
sidering the integration, we can better leverage the constrained
linguistic and acoustic information as keywords are fixed or lim-
ited in number. In this direction, a neural network based text-
dependent speech enhancement (TDSE) method was proposed
in [14] for recovering the original clean speech signal of a spe-
cific keyword. In the open-vocabulary KWS approach in [15],
an attention-based text-audio cross-modal matching approach
was proposed, where a denoising loss for the acoustic embed-
ding network is specifically used to improve noise robustness.

Aiming to improve the KWS performance under noisy con-
ditions and make full use of the prior information of keywords,
we propose a novel audio context bias based front-end and
back-end integrated KWS model. Inspired by [12], we cascade
the DCCRN encoder with a dilated temporal convolution (DTC)
based [16] KWS model, resulting in the DCCRN-KWS model
learned under multi-task learning framework. To further bias
the model to learn specific keywords, inspired by the advances
in context bias in ASR [17], we further introduce an audio bias
encoder which extracts specific keyword embedding from key-
word audio samples. The keyword embedding, subsequently
concatenated with the DCCRN encoder output, is fed into the
KWS module. Based on the observation that each DCCRN en-
coder layer output has clear discrimination between keywords
and non-keywords, we further introduce a feature merge module
to aggregate the outputs from each layer to further strengthen
such discrimination. Finally, we propose a complex context
linear module to better integrate the bias embedding with the
DCCRN encoder output, improving KWS performance further
and avoiding model complexity explosion. Experiments on two
challenging datasets clearly show the advantages of the pro-
posed approach with superior performance and reasonable com-
plexity. Ablation studies further demonstrate the good design of
different modules.

2. Audio Context Bias for DCCRN-KWS
In this section, we first introduce our back-end KWS module
and then detail the proposed DCCRN-KWS architecture, fol-
lowed by the design of audio context bias module, feature merge
module and complex context linear module respectively.

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

929 10.21437/Interspeech.2023-1184



2.1. Architecture of KWS module
As shown in Fig. 1, our KWS module consists of multi-
ple Dilated Temporal Convolutional (DTC) blocks, which has
achieved impressive performance recently [16]. In detail, a di-
lated depthwise 1D-convolution layer is first used to obtain tem-
poral context, followed by two layers of pointwise convolution
to integrate the latent features from different channels. Finally,
we use a fully connected (FC) layer with softmax function to
estimate the posterior probability of the keyword.
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Figure 1: Architecture of KWS module.

2.2. Network structure of DCCRN-KWS
We choose DCCRN [6] as our front-end speech enhancement
model. Shaped with an encoder-decoder Unet structure, a
deep complex convolution recurrent network was updated from
the CRN network by introducing complex convolution and
LSTM, leading to superior performance in noise suppression.
A straightforward way to unify the DCCRN model with the
KWS model is to directly compose them in a cascaded struc-
ture. In this way, we expect the DCCRN front-end to learn the
latent representation that benefits KWS without signal supervi-
sion on enhancement and fully depends on the optimization of
the KWS back-end. However, besides the increased complex-
ity of the whole model, previous work [12] has shown that this
direct composition framework is not as good as the multi-task
learning (MTL) framework with two explicit optimization tar-
gets. Therefore, we shape our architecture in Fig. 2 in an MTL
manner [12], where the main task is keyword spotting and the
auxiliary task is speech enhancement. Specifically, we make the
DCCRN encoder shared by the enhancement decoder and the
KWS network in order to extract the latent representation of the
input signals that can benefit both tasks. The whole architecture
is optimized during training and the speech enhancement part is
simply discarded during inference. Based on this architecture,
we introduce several important modules, including audio con-
text bias, feature merge and complex context linear, detailed in
the following subsections.

2.3. Audio Context Bias
Inspired by the context bias strategy in ASR [17], we intro-
duce a novel audio context bias module into our DCCRN-KWS
model. Different from extracting text embedding in [15], we
apply an audio encoder to extract keyword audio embedding
directly. The main reason is twofold. First, measuring audio-
audio similarity is more straightforward than audio-text simi-
larity; text bias is more flexible for customizing keywords but it
is not the purpose of this paper. Second, such audio bias can bet-
ter leverage real audio samples, further helping with the speech
enhancement task to improve robustness in keyword discrimi-
nation in noisy conditions.

In detail, we first make a keyword audio list that is selected
from the keyword corpus. The list can be fixed (once chosen
from the corpus, it is not changed anymore) or varied (ran-
domly selected from the corpus every time). Then we feed the
keyword samples on the list to an embedding extractor to ex-
tract the bias embedding. Here we adopt ECAPA-TDNN [18]
as the embedding extractor because this network shows supe-
rior ability in information aggregation from short audio clips
and leads to SOTA performance in speaker verification. Fi-
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Figure 2: Audio Context Bias based DCCRN-KWS architecture.

nally, we average all the bias embedding vectors on the list and
concatenate the average embedding with the last layer output
of the DCCRN encoder. The concatenated final embedding is
used as the input of the KWS module. Please note that when
the keyword audio list is fixed, the keyword bias embedding is
fixed accordingly during the inference time. Therefore, in this
case, the additional complexity of the audio context bias mod-
ule is negligible at run-time as the embedding extractor is not
in use. In our case, the dimension of the keyword embedding is
set to 192 and ECAPA-TDNN is implemented by SpeechBrain
toolkit [19]. The ECAPA-TDNN-based embedding extractor is
jointly trained with the whole DCCRN-KWS structure.
2.4. Feature Merge
As we adopt the DCCRN encoder output as the feature for
KWS, the purpose of each encoder layer should be analyzed.
To this end, we visualize different encoder layer’s output via
frame level energy mt:

{
mt =

∑
c

∑
f Mc,f,t

Mc,f,t =
√

ℜ(E)2c,f,t + ℑ(E)2c,f,t
(1)

where Ec,f,t ∈ RC×F×T denotes each encoder layer and
C,F, T denote the channel number, frequency bins, and time
frames respectively. ℜ(E) and ℑ(E) represent the real and
imaginary parts of the encoder output respectively. Using a key-
word sample and a non-keyword sample as input, we visualize
the layer-wise energy in Fig 3. We can see that the keyword
part shows relatively higher energy as compared with the rest
part, and this phenomenon is more salient for higher encoder
layers. In contrast, this phenomenon is not the case for the non-
keyword sample, where the energy distribution has a similar
pattern for different layers. Whereas, we can conclude that the
DCCRN encoder aims to enhance the energy of the keyword
part which can subsequently benefit the KWS module to better
distinguish the keyword from other audio parts.

Motivated by this phenomenon, we develop a feature merge
module to increase the discrimination between keywords and
others. Specifically, we first initialize a group of feature merge
ratio wi, where the last layer’s ratio is 1 and other layers are 0.
Then as the dimension of the previous encoder layer is twice
than that of the final layer, we downsample the output of these
layers. Finally, we weighted-average the outputs of the encoder
layers to obtain the feature merge output E′. The process can
be summarized as

E′ =
∑

i

wi ∗ downsample(Ei)/
∑

i

|wi| (2)

where wi is learnable weights during training and fixed during
inference. From Fig 3 (d) and (h), we can see that the keyword
segment becomes more salient after the feature merge while the
non-keyword is almost unchanged.
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(a) encoder layer 1 (b) encoder layer 2 (c) encoder layer 6 (d) feature merge result

(e) encoder layer 1 (f) encoder layer 2 (g) encoder layer 6 (h) feature merge result

Figure 3: The energy of different encoder layers and the feature
merge output for a keyword sample (up row) and a non-keyword
sample (bottom row).

2.5. Complex Context Linear
A common strategy of combining the bias embedding and en-
coder output is simply concatenating them together and subse-
quently going through a fully connected layer. As we know,
contextual information is essential for the KWS task. To better
model context, another strategy is concatenating several history
frames of temporal features of the encoder and the bias embed-
ding as the input of the fully connected layer. However, this
simple concatenation will lead to a computational complexity
explosion.

In order to better take the encoder context into account and
avoid the complexity explosion, we specifically modify the fully
connected layer shown in Fig 4. We first split the encoder’s
output into real/imag parts separately and then concatenate the
real/imag parts with bias embedding respectively. Finally, the
context features of current (t) and previous frames (t−1, t−2)
are combined together as the fully connected layer’s input. Sim-
ilar to the group convolution, the complexity is almost halved as
compared with simple context concatenation.
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Figure 4: Complex context linear module.
2.6. Loss Function
We adopt the typical time-domain SI-SNR [20] loss function for
the speech enhancement task, while binary cross entropy (BCE)
loss is used as the KWS loss. The final loss can be formulated
as

{
LBCE = −yi ∗ ln(yi)− (1− y∗)ln(1− yi)

L = LSI-SNR + LBCE
(3)

where yi = H(xi; θ) ∈ {0, 1} is the posterior predicted by the
KWS model H with parameter θ, y∗i ∈ {0, 1} is the ground-
truth class label for frame i.

3. Experiment
3.1. Dataset
We first conduct ablation experiments to prove the effective-
ness of each proposed sub-modules on a large internal training
set and the task is to detect the keyword “ding1-dang2-ding1-
dang2” in Mandarin. Specifically, a 158-hour keyword-specific
speech dataset is used as positive training data, and a 139-hour
speech dataset collected from Youtube is served as negative
training data. The test is recorded in far-field noisy conditions,
where the number of positive and negative samples are 239 and
12,480 respectively with SNR ranging from -6 to -2 dB.

Besides the internal task, we further validate our approach
on the publicly available HIMIA dataset [21] recorded from
a high-fidelity microphone with spoken keywords “ni2-hao3-
mi1-ya4” in Mandarin. The training set contains 10 hours of
keyword samples from 254 speakers and the test set is com-
posed of 3,520 keyword samples from another 44 speakers.
As speaker labels are known, speaker-dependent audio lists for
keyword bias can be further studied. In this task, we adopt 90
hours of negative samples selected from the librivox speech cor-
pus. For testing, besides the above positive testing samples,
another 3,600 negative samples are randomly selected from lib-
rivox, in total 7,120 audio samples.

During the training for both tasks, the training data are gen-
erated on the fly with SNR ranging from 0 to 15 dB and the
image method [22] is used to simulate RIR with RT60 ranging
from 0.05s to 0.95s. For the internal set, the noises are selected
from both an internal noise set and freesound,174 hours in to-
tal. As for the HIMIYA public set, 56 hours of noise are selected
from freesound. During training, we randomly add 1 to 4 types
of noise to each speech utterance. Particularly, the speakers and
noises have no overlap between training and testing. Further-
more, particularly for the HIMIYA set, we randomly clip the
negative examples to short clips with a duration of 1 to 3 s for
both training and testing in order to avoid the model overfitting
to a specific time duration since the length of positive exam-
ples ranges from 1 to 3 s. To test our model’s performance on
different SNR conditions, we add noise to the HIMIYA testing
samples under SNR of -5, 0, and 5 dB respectively.

3.2. Training setup and baselines

For the proposed model, the window length and frame shift are
25ms and 10ms respectively while the STFT length is 512. Our
model is a causal one without considering future frames. For
both datasets, all models are trained for 17,500 iterations. And
we use 8 NVIDIA V100 32GB GPUs for the internal dataset
and 1 for the public one. Adam optimizer is used with a Noam-
based scheduler [23], where the Noam factor is 5 and the warm-
up step is 1,000. During training, the number of the audio bias
list is set to 50 and the input dimensions of the KWS module are
128. Furthermore, the fully connected layer between the final
encoder output and the KWS module for DCCRN-KWS (w/o
audio context bias), DCCRN-KWS (w/o complex context lin-
ear) and DCCRN-KWS (w complex context linear) are 1024 ×
128, 1216 × 128, 608 × 64 × 3 separately. For the complex
context linear module, the context number is set to 3 (the previ-
ous two frames with the current frame). The model details are
described as follows.

• KWS module: The number of DTC layers is 16, and the
kernel size and dilation are 5 and 1-2-4-8-1-2-4-8-1 respec-
tively. To achieve streaming inference, all convolutions are
causal ones.

• DCCRN: The number of channels for the DCCRN is
{16,32,64,128,256,256}, and the convolution kernel and step
are set to (5,2) and (2,1) respectively. Two 256-dimensional
LSTM layers are adopted with a 256-dimensional project
layer. Each encoder/decoder module handles the current
frame and one previous frame.

During training, we select up to 10 frames around the last
frame of a keyword audio clip as positive training samples and
assign 1 to them, while other frames in the keyword audio clip
are discarded as ambiguous and are not used in training. For
negative training utterances, all frames are regarded as negative
training samples and assigned to 0 accordingly.
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(a) With & w/o DCCRN (b) With & w/o AudioBias

(c) FM & CCL (d) Overall comparison

Figure 5: Results of comparison models and ablation of the pro-
posed model on the internal dataset. FM: Feature Merge; CCL:
Complex Context Linear.

3.3. Experimental results and discussion
3.3.1. Results on internal dataset
As shown in Fig 5, ablation is conducted to evaluate the effec-
tiveness of different model components of our system, includ-
ing a) DCCRN module, b) Audio context bias module (Fix / not
Fix), c) Feature merge module (FM), and d) Complex context
linear module (CCL). To show the effectiveness of audio con-
text bias, we replace the bias embedding with a learnable bias
embedding as a sanity check. For this learnable bias embedding,
we first initialize a group of parameters as the bias embedding,
then we send the bias embedding into the DCCRN-KWS mod-
ule to update the value with the model training. Performance is
measured by plotting the receiver operating curve (ROC), which
calculates the false reject (FR) rate per false alarm (FA) rate.
The lower the FR per FA rate, the better the system.

It can be seen from Fig 5(a) that after applying the DC-
CRN module, the performance becomes obviously better. This
indicates that the use of an explicit speech enhancement mod-
ule under multi-task learning framework is helpful to assist the
KWS module to improve performance. From Fig 5(b), adding
audio context bias module yields a lower false reject rate when
the false alarm rate kept the same with the system without the
bias module, which shows the effectiveness of keyword audio
embedding. We notice that fixed keyword audio list (Fix) per-
forms better than varied list during training. This is probably
because the model can be more easily trained and optimized
better with a fixed list during training.

By comparing the learnable embedding with the embedding
extracted by ECAPA-TDNN, we can see that the embedding ex-
tracted by keyword audio list is more effective than the learn-
able embedding. We can explain this phenomenon from sev-
eral aspects. First, the embedding extracted from keyword au-
dio contains more structure information of keywords than the
learnable embedding. Second, we extract the bias embedding
from real audio samples, which is easy to calculate the simi-
larity with the DCCRN-KWS model compared with the learn-
able embedding. Furthermore, as shown in Fig 5(c), when the
feature merge module is applied, the performance is further im-
proved. This is because the feature merge module can empha-
size the discrimination of the keyword part as plotted in Fig 3,
which can help the KWS module to distinguish the keyword
from others. Finally, when the complex context linear mod-
ule is adopted, our system achieves the best performance. This
indicates that combining the context information and bias em-
bedding can better discriminate the keyword. In summary, the
overall comparison on all methods is shown in Fig 5(d).

Figure 6: Results of different models and ablation of the pro-
posed model on public HIMIYA dataset.

3.3.2. Results on HIMIYA dataset
We further evaluate our models trained on the HIMIYA dataset.
Fig 6 shows the KWS performance measured by wake-up ac-
curacy under the setup that up to one time false alarm trig-
gered in 10 hours’ exposure to continuous noisy speech. In
low SNR, high SNR and even clean scenarios, our contribu-
tions show their effectiveness according to the results. Please
note that when speaker-dependent audio samples are applied
as the audio list, the performance is better than the use of
the speaker-independent audio list. This is because, for the
speaker-dependent audio list, the extracted embedding contains
both keyword information and speaker information. Further-
more, we notice that the improvements achieved from the pro-
posed methods are less on the HIMIYA dataset than the internal
dataset. The main reason is that the duration of the enrollment
audio in the HIMIYA dataset is relatively shorter than that in
the internal dataset, while empirically a longer bias keyword
will lead to a more robust keyword embedding.

3.4. Inference Time
As shown in Table 1, we evaluate the RTF and CPU usage on
RK3326 Cortex-A35@1.5GHz low-resource platform. Infer-
ence precision is set at float32 with ONNX runtime engine. We
also implement a comparison system, named DCCRN-KWS-
joint-train in Table 1. In this comparison system, we jointly
train a cascaded DCCRN-KWS system with the two losses,
where the enhanced speech by DCCRN is fed to the DTC-based
KWS system. We can see that the CPU usage and RTF for this
system are not acceptable. In contrast, the proposed DCCRN-
KWS has reasonable CPU usage and RTF. Importantly, based
on the DCCRN-KWS framework, the components we intro-
duced yield only a small increase in RTF.

Table 1: RTF and CPU usage on low resource platform.

Model CPU Usage (%) RTF

KWS 16 0.27
DCCRN-KWS 35 0.67

+ AudioBias 36 0.69
+ FM 36 0.70

+ CCL 38 0.72
DCCRN-KWS-joint-train 94 2.85

4. Conclusion
This paper introduces a front-end and back-end integration
framework for KWS in noisy conditions, named DCCRN-
KWS. Specifically, we shape the integration in a multi-task
learning manner, while DCCRN is adopted for speech enhance-
ment and its encoder output is coupled with the KWS model for
keyword spotting. Based on this MTL architecture, we propose
an audio bias module that aims to better learn the discrimination
between keywords and non-keywords. Feature merge and com-
plex context linear modules are also introduced to strengthen
such discrimination and to effectively leverage contextual in-
formation respectively. Experiments on two datasets show the
effectiveness of the proposed approach.
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