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Abstract
As prompt-based generative models have received much atten-
tion, many studies have proposed a similar model for sound
generation. While prompt-based generative models have an in-
tuitive interface for non-professional users to experiment with,
they lack the ability to control the generated sounds via a more
direct means.

In this work, we investigated the use of a simple segment-
based labeling scheme for human vocalization generation,
which is a specific subset of sound generation. By condition-
ing the generative models on the label sequence which marks
the vocalization class of the segment, the generated sound can
be controlled in a more detailed manner while maintaining a
simple and intuitive input interface.

Our experiments showed that simply switching the label
scheme from global to segment-based does not degrade the
quality of the generated samples in any way and provides a new
method of controlling the generation process.
Index Terms: human vocalization, sound generation, speech
generation

1. Introduction
Sound generation systems are useful for many practical appli-
cations such as generating sound effects for video games [1, 2],
movies [3], interactive media, or conveying emotions in human-
machine interactions [4, 5]. Hence, there is growing interest
in developing a new method for generating sounds through a
simple and intuitive input interface. Prompt-based sound gen-
eration is one such method, and it has gained much attention
[6, 7, 8] due to the increasing interest in prompt-based image
generation [9, 10]. While generating by describing the desired
output via text input is an intuitive interface in theory, the real-
ity is that it is unreliable and lacks precision. Many subsequent
studies on text-to-image generation have focused on develop-
ing a new mechanism that enables more direct control over the
generated output [11].

Compared with image generation, there is less research fo-
cusing on sound. The most straightforward method for sound
generation is to train a model conditioned on a one-hot vector
label of the desired class [12, 13]. Barahona-Rios et al. [4]
trained a WaveGAN model [14] conditioned on emotion intent
to generate knocking sounds infused with a particular emotion.
Kong et al. proposed using the SampleRNN [12] to train an
auto-regressive model that generates sound from a class label.
Similarly, Liu et al. [13] used a three-stage approach to generate
an intermediate quantized latent feature vector to capture long-
term dependencies. Yang et al. [8] proposed a prompt-based
sound generation system using a diffusion model to generate
sounds from quantized tokens. While a prompt-based system

provides an engaging and intuitive input interface for regular
users, it cannot control the generated samples’ structure.

In this study, we propose a labeling scheme for control-
ling human vocalization generation. Our results demonstrate
that simply switching from global labels to segment-based la-
bels make it possible to manipulate the generated samples in a
more detail-oriented manner while at the same time maintaining
a simple input interface for human intervention. The proposed
labeling is model-agnostic and can be integrated into a more
complex system. For the experiment in this paper, we tested
the method using the auto-regressive sound generation system
proposed by Liu et al. [13]. The results showed that the qual-
ity of the generated samples was not affected and the proposed
approach opened up a new control functionality. The remain-
der of the paper is organized as follows: Section 3 describes
our method and system, Section 4 provides detailed informa-
tion about the experiments and evaluation results, Section 5 ex-
plains different ways of manipulating generated samples using
the new interface, and Section 6 concludes our findings.

2. Related Work
Our work closely relates to sound generation [15, 16, 14], pro-
cedural audio [2], and human vocalization generation [17, 18]
such as laughter [19, 20] and affect bursts [21].

Video-to-sound generation is a task of automatically gen-
erating a sound sample to accompany a silent video segment
[22, 3]. The purpose of such models varies from learning a re-
lationship between sound and material perception [22] to sup-
porting video production by reducing the cost of creating high-
quality sound effects [3]. Since these models are tied to video
inputs, there is no method for human intervention to obtain the
desired output. Subsequently, Cui et al. [23] proposed a timbre-
controllable video-to-sound model by introducing an acoustic
encoder to model timbre information.

Prompt-based sound generation, or text-guided audio syn-
thesis, is a model that generates sound on the basis of a natural-
language description [7, 8, 24]. Due to the success of prompt-
based generative models for images [25, 10] and video [26],
there have been many subsequent studies on similar models
for audio. Unlike video-to-sound, which cannot be controlled,
prompt-based models are intuitive and suitable for human users.
However, due to the impreciseness of natural language, it is
tricky to manipulate the output samples through the text inter-
face. Hence, research is being conducted toward a more precise
interface [11].

Class-based generation is the most simplistic approach
among the three mentioned in this section. We condition the
generative model on a class label and enable it to generate new
samples [12, 4]. Due to its simplicity, there is no mechanism to
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Figure 1: Multi-stage sound generation system conditioned on
vocal class labels. It includes three main components: the
HiFiGAN Vocoder that transforms acoustic features to wave-
form (left), VQ-VAE representation learning model (middle),
and auto-regressive model that generates the quantized latent
feature vector (right).

control the output, and users must depend entirely on the model.
Our proposed method focuses on improving the flexibility of
this class-based approach.

3. Multi-Class Human Vocalization
Generation System

3.1. Conditional Sound Generation System

The conditional sound generation system proposed by Liu et al.
[13] serves as the base for our multi-class human vocalization
generation system. Human vocalizations are essentially a spe-
cific category of sounds, so we used the source code released
by the authors1 as is. We summarize the basis of the system in
this section; readers can refer to the original paper for more de-
tails. The sound generation system comprises three main mod-
els. Figure 1 illustrates the system’s overall structure.

The HiFiGAN Vocoder [27] transforms spectrograms into
waveforms. We did not use the pretrained model released by
Liu et al. and instead trained our model on our data using the
source code released by Kong et al.2 as our experiments focused
on human vocalization rather than general sounds.

The VQ-VAE representation learning model was trained
on the speech and sound data in a self-supervised fashion. It
learned a non-linear mapping from a spectrogram to latent rep-
resentation z that was further quantized using a learned code-
book c into a simpler representation r. The model assumed
a fixed-size spectrogram input extracted from a four-second
waveform sampled at 22.05 kHz with a window length of 1,024
points and a window shift of 256 points.

The conditional sound generation model is an auto-
regressive model based on PixelSNAIL [28], which combines

1https://github.com/liuxubo717/sound_
generation

2https://github.com/jik876/hifi-gan

global segment-based

1coughing 0 0 1 1 0 1 0 0

2crying 2 2 2 0 0 2 2 0

9yawning 0 9 9 9 0 0 0 0

Figure 2: Global and segment-based class labeling schemes.

causal-convolutions layers with a self-attention mechanism.
The model is conditioned on a one-hot vector class label and
trained to generate a codebook k index sequence one after an-
other. We turn the generated sequence into the feature map r
using the codebook and then into a spectrogram using the VQ-
VAE decoder.

The setups of these models were kept the same as in their
original papers. Our focus is testing a novel labeling scheme
that can create a new interface for controlling generation, which
will be explained in the following section.

3.2. A Simple Scheme of Segment-based Labeling

Given the model proposed by Liu et al. [13] described in the
previous section, we generate a sound sample of a specific class
by feeding the class label to the auto-regressive model with-
out any other mechanism to manipulate the outcome. We pro-
posed using a segment-based label scheme instead of a sin-
gle global label for the entire sample to address this limita-
tion. Specifically, given a four-second sample, we prepared
an 86-dimensional label using a sequence of overlapped win-
dows. The value of each element of the label vector will either
be 0, representing a silence frame, or k, the index of the specific
vocalization class, depending on the samples within the corre-
sponding window. Figure 2 presents the difference between the
global and the segment-based labeling schemes. Our proposal is
a more straightforward and highly abstract version of the wave-
form silhouette described in [20].

For example, given a training sample of a laughing sound
(with laughing being assigned the index of 3), we used a se-
quence of windows with a window length of 4,096 points and
hop length of 1,024 points to extract and define a segment-based
label sequence. The element will receive the label value 0 if the
root mean square (RMS) value within its window is below a
specified threshold, which was -24 dB in our experiments. If
the RMS value is above the threshold, then the element will re-
ceive its class value, which is 3 in this case. The 0 index was
reserved for silence frames, and it was used across samples of
all classes.

To use this segment-based label scheme to generate a new
four-second sample, we feed the generation model an integer
sequence with 86 values. This interface is simple enough for
human intervention but more flexible than a global class label.

4. Experiments
4.1. Data

We used VCTK [29] and a subset of the commercial Deeply
Nonverbal Vocalization dataset3 for training. The VCTK speech
corpus was used for pretraining as speech data were expected to

3https://www.babba.ai/nonverbal
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Figure 3: Subjective evaluation with human perception.

be beneficial for vocalization sound generation. As the Deeply
corpus includes vocalization perofrmed by non-professional in-
dividuals and the samples were recorded using the participants’
mobile phones, the overall quality is relatively low, but we
deemed it to be sufficient for our experiments. To enhance the
quality, we used the portion marked as ‘clean’ by the provider
and discarded samples marked as ’noisy.’ Moreover, we only
used nine out of 16 classes included in the dataset, which
are coughing (2,732), crying (966), laughing (1,155), moaning
(1,745), panting (745), screaming (843), sighing (3,206), throat-
clearing (4,414), and yawning (3,090), as it is questionable to
classify the rest as vocalization. The amount of data (the num-
ber in parentheses) varied between classes as shown. In total,
there were 18,896 samples in the training set, 45 for validation,
and 100 for testing. All samples were 16 bits and sampled at
22.05 kHz. For the acoustic features, the mel-spectrogram was
extracted as described in the HiFiGAN paper [27].

4.2. Model and training configuration

In our experiments, we tested a baseline system that uses global
labels, as described in [13], and the proposed system that uses
segment-based labels. As we focus on the labeling schemes
rather than the model itself, the configuration between the two
systems was kept the same wherever possible. More specifi-
cally, the same HiFiGAN Vocoder and VQ-VAE model were
used for both systems. For the HiFiGAN Vocoder, we first
trained it with the VCTK dataset for 120,000 steps at a learn-
ing rate of 0.001 and batch size of 12, then continued to fine-
tune with the human vocalization data. Similarly, we trained the
VQ-VAE model with speech data for 7,000,000 steps at a learn-
ing rate of 0.0001 and batch size of 24, then switched to the
vocalization data. The difference between the two systems is
whether their auto-regressive models are conditioned on global
or segment-based labels. We trained these auto-regressive mod-
els for 700,000 steps on human vocalization data at a learning
rate of 0.0001 and batch size of 24. A single NVIDIA A100
GPU was used to train all models.

4.3. Subjective evaluation setup

Unlike previous work on sound generation [12, 13] which used
indirect metrics for evaluations, we believe people should eval-
uate generation systems as they are the end users. Our evalua-
tion using human listeners is also one of the main contributions
of our research. We asked ten participants two types of ques-
tions regarding the presented sound samples. First, we asked

Table 1: Subjective quality evaluations and classification results
by vocal classes.

(a) BASE
Class MOS Classification (%)

1 2 3 4 5
1. Coughing 2.44 80.0 12.0 7.0 0.0 1.0
2. Crying 2.01 2.0 82.0 12.0 2.0 2.0
3. Laughing 2.12 1.0 11.0 86.0 0.0 2.0
4. Panting 1.88 6.0 9.0 0.0 71.0 14.0
5. Yawning 2.28 5.0 1.0 0.0 6.0 88.0

(b) SAME
Class MOS Classification (%)

1 2 3 4 5
1. Coughing 2.73 92.0 3.0 3.0 1.0 1.0
2. Crying 2.21 0.0 64.0 16.0 3.0 17.0
3. Laughing 2.13 2.0 15.0 81.0 2.0 0.0
4. Panting 2.20 3.0 18.0 3.0 52.0 24.0
5. Yawning 2.41 6.0 2.0 1.0 11.0 80.0

(c) DIFF
Class MOS Classification (%)

1 2 3 4 5
1. Coughing 2.31 75.0 3.0 21.0 0.0 1.0
2. Crying 2.17 5.0 61.0 17.0 3.0 14.0
3. Laughing 2.14 3.0 29.0 63.0 2.0 3.0
4. Panting 1.74 7.0 20.0 4.0 31.0 38.0
5. Yawning 2.11 2.0 9.0 0.0 8.0 81.0

participants to judge the general quality of a sample out of a
typical five-point scale mean opinion score (MOS). Second, we
asked participants to classify a sample into one of five classes:
coughing, crying, laughing, panting, and yawning (only these
five classes were evaluated). The classification task was simi-
lar to that presented by Kong et al. [12], but instead of using a
trained automatic system, we directly asked the listeners. In the
end, each participant completed ten sessions. Each session in-
cluded 20 quality and 20 classification questions. We prepared
these sessions so that they had samples from all evaluated sys-
tems and all evaluated vocal classes.

The evaluated systems included the natural samples (NAT)
held out for evaluation purposes, the baseline system (BASE),
which used global labels, and two of our proposed systems,
SAME and DIFF, which used segment-based labels. The dif-
ference between them is the segment-based labels used for gen-
eration; the SAME system used labels extracted from natu-
ral samples of the same vocal class to generate sounds, while
the DIFF system used labels of natural samples from differ-
ent classes. For example, the SAME system uses segment-
based labels extracted from natural laughing samples to gener-
ate laughing samples. In contrast, the DIFF system used labels
extracted from coughing, crying, panting, yawning, and scream-
ing (screaming was exclusively used for label extraction). Even
though the segment-based label is a highly abstract representa-
tion, the label pattern may still affect the nature of generated
samples, so we decided to test it in two different ways.

4.4. Evaluation results

Figure 3 shows the evaluation results of the listening test sur-
vey. In terms of the perceived quality of the generated samples,
all three synthesis systems produced samples that were of sig-
nificantly lower quality than the natural samples, as expected.
Our proposed method, specifically the SAME system, yielded
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Figure 4: Using same label shapes to generate different types of
vocalization sounds.

higher quality than the baseline, and the difference was statis-
tically significant, as indicated by the 95% confidence interval.
The DIFF system, however, yielded slightly lower quality than
BASE, but the difference is not significant. Given the results
presented in Fig. 3(a), we concluded that switching from global
labeling to segment-based labeling does not affect the quality
of generated samples. In many cases, it improves the perceived
quality. For the classification questions, listeners were asked to
identify the sound type. The accuracy of each system is pre-
sented in Fig. 3(b). Interestingly, the BASE system received
more correct answers than the proposed systems, with SAME
being significantly higher than DIFF. We can interpret this re-
sult to indicate that the BASE system can generate samples with
clearer characteristics because the output samples do not have
to conform to label shapes.

Table 1 contains detailed results of each vocal class of the
BASE, SAME, and DIFF systems. We do not include NAT
as it has high quality and accuracy scores. Among the vocal
classes, coughing received the highest score for all systems,
while panting received the lowest. However, this may be due to
data imbalance as there were the fewest panting samples (745)
and most coughing samples (2,732) out of all training classes.
A counterargument is that yawning has 3,090 samples, but the
perceived quality is not the highest. Thus, we conclude that the
amount of data is an important aspect but not the only one.

We focused on human vocalization and set up the experi-
ments with five vocal classes because we wanted to evaluate the
sound generation system in a more nuanced manner rather than
simply generating a random high-quality sample. As shown
by the classification results of each vocal class, coughing was
primarily mistaken for crying or laughing. Moreover, laugh-
ing/crying and panting/yawning were often confused by the lis-
teners. Between BASE and SAME, our proposed model yielded
a higher correct rate for coughing but a lower rate for crying and
panting.

5. Controlling Vocalization Generation
In this section, we introduce several methods of utilizing the
proposed segment-based label scheme for controlling synthetic
sounds. The generated samples can be found at the associated
website4. We used two label shapes A and B, as shown in Fig.
4, to demonstrate the effectiveness of the proposed method for
controlling generation. The associated samples are also marked
with either A or B shape whenever applicable.

5.1. Same shape with different labels

As the segment-based label is a sequence with 86 elements that
received either 0 or the assigned value of vocalization, the val-
ues can be directly edited to manipulate the generated samples.
Our scheme used a highly abstract representation for controlling
audio generation, so the segment-based labels do not directly
dictate the shapes of the output waveforms but act as a guide
for the generation. Figure 4 shows several examples of sam-
ples of different vocalization classes when using the same label
shape as the input. Depending on the vocal class, the model
interpreted the same shape differently to produce the desired
sounds. Generally speaking, the label inputs dictate the shape
of the output waveform.

5.2. Multi-class within a single sample

Another way to utilize the segment-based label scheme is to
generate multiple vocal classes within a single sample. To test
this, we generated several samples on the basis of two scenar-
ios. In the first scenario, we used the label shape A, assigned
two vocal classes instead of one to the region, and attempted
to generate sound samples. The results were inconsistent but
still worth examining. For example, by assigning both cough-
ing and crying, we obtained a sample reflecting both classes, but
results for other combinations varied. In the second scenario,
we used the label shape B and assigned one vocal class to the
first region and another to the second. In this case, we generally
received the expected samples. However, for several combina-
tions, the second vocal class failed to generate any meaningful
sound, suggesting that the position of the label affects the out-
puts due to the fixed-size nature of the model. Samples can be
found at the associated website.

6. Conclusion
We have integrated a segment-based label scheme into a pre-
existing sound generation model and demonstrated that con-
trollability can be increased while still maintaining the quality
of generated samples. Although the generated samples had a
relatively low quality score as judged by human listeners, they
received very high classification accuracy scores (81.4% for
BASE and 73.8% for SAME), even though the focused vocal
classes were quite similar. Controllability is the next step for
the generation model as it provides an interface for human in-
tervention. Toward this end, designing an intuitive and flexible
input interface for sound generation is crucial. In future work,
we will test our labeling scheme on more elaborate and power-
ful models such as diffusion [8] and expand our experiments to
other sound classes besides human vocalization.
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