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Abstract
This paper explores the wav2vec 2.0 model for dialect identifi-
cation, focusing on the impact of the back-end network during
fine-tuning. Prior research has typically used wav2vec 2.0 as
a frame-level feature extractor, followed by a simple back-end
consisting of a pooling layer and a fully connected layer. In con-
trast, we employ multi-scale aggregation and a graph neural net-
work to design a more sophisticated back-end that implicitly ex-
ploit phoneme sequence information and significantly improves
system performance. We evaluate our system on the dialect
identification task of the Oriental Language Recognition Chal-
lenge 2020 (AP20-OLR). Experimental results demonstrate that
our system outperforms the state-of-the-art baseline by a rela-
tive reduction of 50% in Cavg. We also verify the effective-
ness of our proposed back-end network, which results in a rel-
ative reduction of 54% in Cavg. Our findings highlight the im-
portance of incorporating a more effective back-end network
for improved dialect identification performance when using the
wav2vec 2.0 model.
Index Terms: dialect identification, wav2vec 2.0, fine-tuning,
multi-scale aggregation, graph neural network

1. Introduction
Dialect identification (DID) is the process of automatically de-
termining the dialect category from a speech sample. DID is
considered a more challenging task than language identification
(LID) because it involves identifying different dialects within
the same language family. The two most effective approaches
to LID are the acoustic-phonetic approach and the phonotac-
tic approach [1]. The acoustic-phonetic approach is based on
phonetic differences between languages, and it is assumed that
phonetic characteristics can be extracted from acoustic signals.
Conventional acoustic-phonetic approaches typically use acous-
tic features and a universal-background model-based GMM
(GMM-UBM) to model the acoustic-phonetic distribution of a
language [2]. In addition, SVM and i-vector techniques have
also been explored to improve LID performance [3, 4]. Modern
DNN-based acoustic LID systems use deep network to extract
utterance-level embedding for LID, achieving high performance
[5, 6]. However, they typically require a large amount of labeled
training data, which is usually scarce in dialect language.

Based on phonological research, each language has its own
set of lexical-phonological rules that govern the combinations
of different phonemes and determine permissible phone se-
quences. While phonemes can be shared across languages, the
statistics of their sequential patterns differ greatly between lan-
guages. Therefore, using phoneme sequence information can
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significantly improve LID performance. Early phonotactic ap-
proaches typically use one or more phone recognizers as the
front-end and phone n-gram modeling for target languages as
the back-end [7, 8]. Recently, the phoneme-aware acoustic LID
systems combining acoustic features and phoneme information
significantly improve LID performance [9, 10]. As they in-
volve phoneme-related tasks such as automatic speech recog-
nition and phoneme classification, the phonetic transcription of
speech is required.

[11] proposed the phonetic and phonotactic LID (PHO-
LID) method, which incorporates phonetic and phonotactic in-
formation hierarchically via a CNN-Trans encoder without the
use of phoneme annotations. In the PHO-LID model, a self-
supervised phoneme segmentation task and a LID task share
a CNN module, which encodes both language identity and se-
quential phonemic information.

Inspired by [11], we propose a new method for DID that
implicitly incorporates phoneme sequence information by de-
signing a more sophisticated back-end for the wav2vec 2.0 pre-
training model. Wav2vec 2.0 [12] is a recently proposed frame-
work for self-supervised learning of representations from raw
audio data. Recent studies have explored wav2vec 2.0 to im-
prove LID performance [13, 14], typically using it as a frame-
level feature extractor, followed by a simple back-end con-
sisting of a pooling layer and a fully connected layer. While
the statistics pooling layer can obtain utterance-level embed-
ding from the frame-level features, it cannot exploit the long-
term dependency that may contain phoneme sequence patterns.
Therefore, we employ multi-scale aggregation to implicitly ex-
ploit phoneme sequence information from the frame-level fea-
tures obtained by the wav2vec 2.0 model. Additionally, we ap-
ply a graph neural network to better fuse the temporal and spec-
tral aggregation features. Experiments verify that the proposed
back-end significantly improves system performance.

2. Related work
This section describes the wav2vec 2.0. Figure 1 shows the
process of pre-training and fine-tuning.

2.1. Pre-training

Wav2vec2.0 is a transformer-based model [15]. The model con-
sists of three sub-modules, including a feature encoder, trans-
former module, and quantization module. The feature encoder
is a multi-layer CNN that maps the raw audio X1:L to a la-
tent speech representation Z1:N . Then, the transformer module
contextualizes the masked representation to generate a contex-
tual representation C1:N . Finally, the quantization module dis-
cretizes the latent speech representation Z1:N into a trainable
codebook Q1:N .
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Figure 1: Pre-training and fine-tuning process of the wav2vec 2.0 model.

During pre-training, the model learns the representation
of speech audio by solving contrastive tasks to improve the
model’s performance. By calculating the contrastive loss for
each masked time step n, the degree to which the target qn is
recognized from a set of distractors is measured given the cor-
responding contextual vector cn.

2.2. Fine-tuning

The wav2vec 2.0 XLS-R (0.3B) [16] model was used for all
the work described in this paper. The XLS-R pre-trained model
uses data from many languages, but the target dialect we need
to recognize is not included. In tasks such as speaker recog-
nition and emotion recognition, researchers have explored fine-
tuning the pre-trained model [17, 18]. The fine-tuning process is
shown on the right side of Figure 1. We added a fully connected
layer on top of the wav2vec encoder to reduce the representa-
tion dimension . In addition, to extract higher-level features,
we added a back-end network after the fully connected layer.
During fine-tuning, no masking was applied to the features, and
the cross-entropy objective function was used to minimize the
training loss.

3. Multi-scale aggregation graph neural
network

In this section, we will introduce the architecture of the multi-
scale aggregation graph neural network with a fine-tuned back-
end. It includes the multi-scale aggregation module, the graph
neural network module, and the attention aggregation layer.
Phoneme sequences can provide important discriminative in-
formation for language identification. Even with the same
phoneme sequence, different temporal dependencies can be pre-
sented due to changes in speaking rate. Multi-scale mechanism
can capture temporal dependencies of different lengths and ob-
tain richer phoneme sequence information. Additionally, Graph
neural network can model the mutual dependency between the
time and frequency domains. Attention aggregation layer is
used to extract more relevant spectral and temporal represen-
tations.

An overview of the complete architecture is presented in
Figure 2. In our experiments, we discovered that the best results
were achieved by using a combination of Rectified Linear Units
(ReLU) and batch normalization (BN) [19] in the multi-scale
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Figure 2: Multi-scale aggregation graph neural network.

aggregation module, and a combination of BN and Scaled Ex-
ponential Linear Units (SeLU) in other modules. The following
sections will introduce the main modules of the network.

3.1. Multi-scale aggregation module

Our multi-scale aggregation module is derived from a partial
structure of ECAPA-TDN [20], as shown in Figure 3. However,
we replaced the original one-dimensional convolution with a
two-dimensional convolution in this module. Specifically, the
multi-scale aggregation module consists of two parts: the SE-
Res2Block and the multi-scale aggregation .

3.1.1. SE-Res2Block

We used the 2D Squeeze and Excitation (SE) [21] and Res2Net
[22] to construct the SE-Res2Block (2D) module. In addition,
we utilized dilated convolutions with different rates to increase
the receptive field without reducing the size of the feature map.
SE is primarily used to learn the correlations between feature
channels by employing another neural network to obtain the im-
portance of each feature channel.

Res2Block is a module that introduces hierarchical con-
nections into residual units. It replaces the original convolu-
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Figure 3: Multi-scale aggregation module. C,F,and T repre-
sent channel number, frequency dimension, and time dimension,
respectively. k denotes the size of the convolution kernel, d de-
notes the dilation factor, and s denotes the group size.

tion kernel with a set of filters that include dilated convolutions
to hierarchically connect different filter groups. Specifically,
Res2Block first uses a 1x1 convolution kernel to adjust the in-
put and output channel numbers, and then divides the output
features into s groups. For each feature map, except for the
first group of channels, a dilated convolution operation is per-
formed to receive information from all previous feature maps.
Finally, all output features from s groups are connected along
the channel dimension, and feature maps with channel attention
are obtained through Conv2D layers and SE modules.

3.1.2. Multi-scale aggregation

According to the studies in [23, 24], aggregating features from
different layers can improve the accuracy of the model in
speaker verification tasks. Considering the hierarchical struc-
ture of neural networks, we concatenate the bottleneck features
of all SE-Res2Block blocks and output the multi-scale aggre-
gated features.

3.2. Graph neural network

According to [25], an end-to-end integrated spectrotemporal
graph attention network was proposed and achieved success in
the field of speech anti-spoofing. We applied the graph neu-
ral network to our model, as shown in Figure 4. Specifically,
this structure includes a graph attention network, graph pool-
ing, heterogeneous stacked graph attention layers (HS-GAL),
maximum graph operation (MGO), and output layer. Firstly,
by using the graph attention network and graph pooling, we
learned spectral and temporal representations from the input to
construct the spectral input graph Gs (Gs ∈ RNs×ds ) and the
temporal input graph Gt (Gt ∈ RNt×dt ). Here, Ns and Nt

are the sets of nodes in the spectral and temporal graphs, and
d is the feature dimension of each node. Next, we project Gs

and Gt into another latent space with a common dimension dst
to construct a combined heterogeneous graph Gst. Gst has Ns

+Nt nodes, where each node in Gs is connected by edges to
every node in Gt.

HS-GAL consists of heterogeneous attention and stack
node. Ours MGO comprises two parallel branches, each of
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Figure 4: Integrated spectrotemporal graph attention network.

which includes two HS-GAL and one graph pooling layer. We
then apply Gst to MGO and apply element-wise maximum op-
eration to the outputs of MGO branches to generate another
heterogeneous graph GST . HS-GAL in each branch of MGO
shares a common stack node. Then, we apply maximum and
average pooling to spectral and temporal nodes of GST , add
the stack node, and concatenate these five different features as
the output of the graph neural network. More details can be
found in [25].

3.3. Attention aggregation layer

Attention statistic pooling [26] has shown positive effects on
speaker recognition and fraud detection tasks [27, 28]. In order
to extract target-related spectral and temporal representations
and obtain discriminative information, we introduced a 2D at-
tention aggregation layer between the multi-scale aggregation
module and the graph neural network module. This attention
aggregation layer uses 2D convolutional layers to generate a 2D
attention weight matrix and calculates attention weights on both
the temporal and frequency dimensions separately to reweight
the features, instead of using traditional 1D attention. Our im-
plementation is the same as in [28].

4. Experimental setup
4.1. Datasets

Task 2 of AP20-OLR is an open-set dialect identification task
[29], which provides three Chinese dialect datasets, namely
Hokkien, Sichuanese, and Shanghainese, for model training and
evaluation. It is worth noting that the pre-trained model XLS-R
does not include our target dialects. We use the same fine-tuning
data and challenges as in the competition. Furthermore, the test
set includes three interfering dialects, namely Mandarin, Malay,
and Thai. Details of the original sources of these datasets are
shown in Table 1.
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Table 1: Datasets used in our systems

Data composition

Training set AP16-OL7, AP17-OL3,
AP17-OLR-test, AP18-OLR-test,

AP19-OLR-dev, AP20-OLR-dialect
validation set AP19-OLR-dev-task3, AP19-OLR-zero
Test set AP20-OLR-dialect-test

4.2. Implementation details

Data augmentation is an effective method to alleviate overfitting
problems and improve model generalization. We used the Raw-
Boost data augmentation tool [30] to add convolutional and ad-
ditive noise to the existing fine-tuning data. In this experiment,
audio data was cropped or padded to 4-second segments with
a sampling rate of 16kHz. During fine-tuning, we used a batch
size of 16 and the standard Adam optimizer [31] with a learning
rate of 10−6. The output dimension of the fully connected layer
during fine-tuning was set to 128, as shown on the right side of
Figure 1. The specific parameter settings of the proposed back-
end network are shown in Figure 2, Figure 3, and Figure 4. All
models were trained for 20 epochs on a single NVIDIA V100S
GPU.

4.3. Evaluation protocol

We followed the rules of the AP20-OLR challenge and used
Cavg and EER as evaluation metrics for the dialect identifica-
tion system [29]. Under open testing conditions, all interfering
languages were treated as one unknown languages. Cavg is de-
fined as the average cost performance between test languages,
with a prior probability Ptarget = 0.5 representing the likeli-
hood of the target language.

5. Result and analysis

Table 2: Performance comparison with and without back-end
network during fine-tuning.

System Cavg EER(%)

Wav2vec2.0 + mean pooling 0.0645 6.63
Wav2vec2.0 + proposed back-end 0.0298 3.78

We used the wav2vec 2.0 pre-trained model as the fea-
ture extractor and applied two fine-tuning settings: one added
a back-end multi-scale aggregation graph neural network, and
the other added a simple back-end network, using only aver-
age pooling and fully connected classification layers, similar to
[13] and [14]. As shown in Table 2, the addition of the multi-
scale aggregation graph neural network in the back-end during
fine-tuning resulted in a significant improvement in our system
performance. Compared to the system with a simple back-end
network, we achieved a relative improvement of 54% in Cavg

and 43% in EER.
In Table 3, we summarize the performance of some top sys-

tems and our proposed system. To our knowledge, using the
self-supervised wav2vec 2.0 front-end combined with back-end
networks has resulted in the lowest Cavg in the OLR2020 dialect
task report. However, we must acknowledge that the reported
results in the literature were obtained using fixed training data,

Table 3: Comparison with Top Systems. In this table, Winning
team refers to the 1st place winner of the OLR Challenge 2020.
DK-TDNN and Conformer systems are advanced systems pub-
lished in Interspeech 2021.

System Cavg EER(%)

Winning team[32] 0.0738 11.97
DK-TDNN[33] 0.0670 6.52
Conformer[34] 0.0594 8.95

Wav2vec2.0 + proposed back-end 0.0298 3.78

while the results reported in this paper were obtained using a
pre-trained model. Nevertheless, the improvement in Cavg rel-
ative to the best result is as high as 50%, indicating that us-
ing a pre-trained model combined with back-end networks can
lead to significant performance improvements. We will con-
tinue to conduct ablation experiments for the various modules
introduced in Section 3 and provide an overview of these results
in Table 4.

Table 4: Ablation Study of Multi-Scale Aggregation Graph Neu-
ral Network Architecture.

System Cavg EER(%)

Wav2vec2.0 + proposed back-end 0.0298 3.78
w/o multi-scale aggregation module 0.0363 4.18
w/o graph neural network module 0.0372 3.86

w/o attention aggregation layer 0.0446 5.37

According to the results in Table 4, it can be seen that each
module in our proposed multi-scale aggregation graph neural
network architecture has a significant impact on performance.
When we remove the multi-scale aggregation module, the Cavg

value and EER increase by 22% and 10%, respectively, in-
dicating that this module plays a significant role in extracting
features at different scales for dialect identification. Secondly,
removing the graph neural network module results in a rela-
tive increase of 25% in Cavg. This may be because the graph
neural network can better utilize the structural information of
speech data. Finally, removing the attention aggregation layer
results in a significant increase in both Cavg and EER, indicat-
ing that this module plays an important role in connecting the
multi-scale aggregation module and the graph neural network
module.

6. Conclusions
This paper explores the wav2vec 2.0 model for dialect identifi-
cation, focusing on the impact of the back-end network during
fine-tuning. The proposed method employs multi-scale aggre-
gation and a graph neural network to design a more sophisti-
cated back-end that implicitly exploit phoneme sequence infor-
mation and significantly improves system performance. On the
dialect task of the AP20-OLR dataset, we achieved state-of-the-
art performance. Compared to the best-known results, the pro-
posed system achieved relative reductions of 50% in Cavg and
42% in EER. Our research emphasizes the significance of in-
tegrating a more efficient back-end network to enhance the per-
formance of dialect identification while utilizing the wav2vec
2.0 model.
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