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Abstract

The training of modern speech processing systems often re-
quires a large amount of simulated room impulse response
(RIR) data to generalize well in real-world environments. How-
ever, simulating realistic RIR typically requires accurate phys-
ical modeling, and the acceleration of such process typically
requires certain computational platforms. In this paper, we
propose fast random approximation of room impulse response
(FRA-RIR) to efficiently generate realistic RIR data without
specific computational devices. FRA-RIR replaces the physical
simulation by a series of random approximations, which signif-
icantly speeds up the simulation process and enables fully on-
the-fly simulation when training neural networks. Experiments
show that FRA-RIR is not only significantly faster than other
existing ISM-based tools on standard platforms, but also im-
proves the performance of speech denoising systems evaluated
on real-world RIRs. The implementation is available online'.

Index Terms: Image-source method, Room impulse response

1. Introduction

The simulation of room impulse response (RIR) filters plays an
important role in the training of various modern speech pro-
cessing systems. Systems trained without reverberant data can
hardly generalize well to real-world scenarios [1], and a good
RIR simulator can improve the performance by augmenting the
anechoic data [2]. A wide range of systems rely on an offfine
training configuration, where a fixed number of training and
development samples are generated in advance and kept un-
changed during the training phase. For the generation of sim-
ulated reverberant speech samples, each anechoic utterance re-
quires a simulated RIR filter to create a training sample. With
the rapid growth of the scale of the data, such generation pro-
cess becomes time and storage consuming and further limits
the amount of available training data that can be used by the
systems. As a consequence, online training with on-the-fly data
simulation becomes important as it can not only generate infi-
nite training data but also requires no extra storage.

Fast and efficient simulation of realistic RIR filters, how-
ever, remains challenging. One of the most widely-used meth-
ods is the image-source method (ISM) (3], where the propaga-
tion and the reflection of the sound sources are calculated by
virtual sound images generated by mirroring the original sound
sources by the room boundaries (e.g., floors and walls). How-
ever, such simulation typically assumes an empty rectangular
or parallelepiped room and a fixed absorption rate of all bound-
aries, which may not be able to simulate realistic RIR filters
that matches the room conditions in the real world where differ-
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ent furniture and materials may result in complicated reflection
patterns. Such room assumptions may also cause the “sweep-
ing echo effect” which hurts the models’ generalization ability
in real-world when trained with such RIRs [4]. Moreover, the
calculation of the sound paths can be complex and time con-
suming. A standard method to accelerate ISM is to use GPU-
accelerated implementations [5,6], where the physical modeling
part can benefit from specific computational platforms. More-
over, to improve the quality of the RIR filters, diffuse-based
methods were proposed to better model late reverberation [7,8],
and ray-tracing-based methods were explored to use explicit
room modeling to calculate the sound paths [9, 10]. Neural net-
works, especially generative adversarial networks (GANs) [11],
were also adopted to refine simulated RIR filters to approximate
the distributions of the real-recorded RIR filters [12—-14]. Al-
though many of these methods have proven effective in certain
applications and platforms, their usage in on-the-fly data simu-
lation have not been fully evaluated and may still be limited by
their speed, complexity and the need for specific platforms.

In this paper, we propose a simple method to approximate
the physical modeling of the sound propagation and reflection
process in ISM, which we refer it to as fast random approxima-
tion of RIR (FRA-RIR). FRA-RIR is particularly designed for
the data simulation process in on-the-fly neural network train-
ing, which aims at fast generation of realistic RIR filters without
the requirement of any specific computational devices or plat-
forms. Instead of explicitly calculating the virtual sound paths,
FRA-RIR randomly approximates the paths as well as the their
reflection patterns to generate an energy-rescaled dirac comb
at a higher sample rate, and then downsamples it to the target
sample rate to generate the actual RIR filter. The relationship
between the sound propagation distance and the reflection is de-
termined via heuristic assumptions and evaluated by grid search
on the hyperparameters. With a standard desktop-level CPU,
FRA-RIR can generate more realistic RIR filters than existing
ISM-based method with an up to 110 times faster simulation
speed, which enables fully on-the-fly data simulation. More-
over, speech enhancement and dereverberation models trained
with FRA-RIR can also achieve on par or better performance
on real RIRs compared to other RIR simulation tools.

2. Fast Random Approximation of the
Image-source Method

2.1. Image-source Method Recap
We adopt the definition of an RIR filter in [2]:
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where I denotes the total number of virtual sound sources, do
denotes the distance of the direct-path sound source, d; denotes
the distance from the ¢-th virtual sound image to the receiver, r
denotes the reflection coefficient of the surface, g; denotes the
number of the reflections of the i-th sound source, fs denotes
the target sample rate, and co denotes the sound velocity. We
follow the same estimation of the reflection coefficient via the
Eyring’s empirical equation [2, 15]:

r = \/1 -(1- e—O.lGR/T60)2 )
where R denotes the ratio between the volume and the total
surface area of the room, and 750 denotes the reverberation time
that takes for the sound to decay by 60 dB in the room.

To ensure a sufficiently high temporal resolution on the
time difference of arrival (TDOA) of different virtual sound
sources, h[n] should be generated in a sufficiently high sam-
ple rate. Given that the target sample rate of the RIR filter is f,
h[n] should be generated at sample rate rp, fs, where rp, > 1
is the rescaling factor. Following the configuration in [2], h[n]
is first downsampled to an intermediate sample rate 7; fs with
1 < 1 < rp, being another rescaling factor, and then a high-
pass filter with a cut-off frequency of 80 Hz is applied to re-
move the unwanted low-frequency components [2, 3]. The fil-
tered RIR filter is then downsampled again to sample rate fs to
serve as the final output to be convolved with the actual sound
source.

2.2. Fast Random Approximation of RIR

FRA-RIR bypasses the explicit calculation of equation 1 by
sound path sampling. Compared to the standard ISM method,
FRA-RIR makes three core modifications:

1. We randomly sample the room-related statistics R instead of
calculating it via the length, width and the height of an empty
room.

We replace the explicit calculation of d; by sampling it from
a probability distribution.

We replace the explicit calculation of g; by defining it as a
function of d; with random perturbations.

2.2.1. Simulating Room-related Statistics

The ratio between the volume and the total surface area of the
room R, which we define as the room-related statistics, is typ-
ically calculated based on the length, width and height of the
room. It also implicitly assumes an empty room so that the cal-
culation of the total surface area only considers the walls. To
enable the approximation of a realistic room-related statistics,
we first randomly sample a Tso within range [0.1, 0.8], and then
we directly sample R within range [0.1, 1.2] instead of explic-
itly calculating its value. We set the upperbound of R to be 1.2
based on the assumption that a larger room leads to a higher
upperbound for R, and the value 1.2 is calculated from an ideal
empty rectangular room with length, width and height of 12 m,
12 m and 4 m, respectively. The reflection coefficient is then
calculated by equation 2.

2.2.2. Distance Simulation in FRA-RIR

For an empty rectangular or parallelepiped room, the distance
between a virtual sound source and the receiver can be directly
computed via their 3D coordinates. However, when there are
extra surfaces in the room, the reflection of the sound sources
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can be highly complicated, and the coordinates of the images of
the original sound source with respect to all the available sur-
faces can be extremely hard to accurately calculate. FRA-RIR
randomly samples the distance ratio D R; 24, /do between the
¢-th virtual and direct-path sound source following the proba-
bility distribution defined by a simple quadratic function:
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where 0 < o < 8 < 1 are scalars controlling the range of the
distribution. Intuitively, using a quadratic function to generate
the probability distribution ensures that the number of distant
virtual sound sources increases as their distance d; increases.
Note that the quadratic function can be replaced by other func-
tions and we simply select it due to its simplicity. DR; € [e, B]
is first sampled from P(x), and DR; is generated by linearly
rescaling DR, to range [1, coTs0/do], where coT6o is the max-
imum distance for a virtual sound source to travel with the given
sound velocity and reverberation time:

@
DR; =1
i + = a(
We empirically set « = 0.2 and 8 = 1 in our configuration due
to its effectiveness in our experiments. The actual travelling
distance d; can then be calculated by d; = DR, - do, and we
uniformly sample do within range [0.2, 12] m.
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2.2.3. Reflection Simulation in FRA-RIR

Given the reverberation time 70, direct-path distance dp, the
reverberation coefficient 7 and the sound velocity cg, we first
calculate the maximum number of reflections a virtual sound
source may have to decay by 60 dB through reflection:

RRmaz = (log;o coTso — logyy do — 3)/log;or  (5)

We then sample the number of reflections g; € [1, RRmax]
by defining it as a function of d;, and further add a random
perturbation to it:

pi ~ u(av b)
d;
coTs0

gi = 1 + ( )2 : (RRnuz:c - 1) +pz : d: (6)

¢i = max(min(g;, RRmaz), 1)

where U denotes the uniform distribution, p; denotes the ran-
dom perturbation on the number of reflections, and 7 > 0
denotes the distance shrinkage factor. The simulation of g;
is based on the heuristic assumption that images with longer
propagation distances may encounter more reflections, and im-
ages with a similar overall propagation distances may also have
different numbers of reflections. We empirically set a = —2,
b=2and 7 =0.2.

2.2.4. Generation of the RIR Filter

The generation of h[n] is straightforward after the sampling of
d; and g;. We first initialize the RIR filter A to an all-zero vec-
tor of length L £ [Teo7h fs], and then add each of the virtual



sources to the filter:

g = min([ % f], L - 1) @)
Co
T'gi
hla:] = hla:] + 4 (®)

We set g; = 0 for ¢ = 0O (i.e., the direct-path sound source). In
tasks where the system is required to perform dereverberation,
an early-reverberation-RIR filter is needed to serve as the target
for the early reverberation component. We define the context
of [—6, 50] ms around the direct-path sound source as the early
reverberation component:

popn) < {0 TS < m = T i) < T
0, otherwise

&)

h[n] and he[n] are then passed to the same downsampling—
highpass filtering—downsampling process as in [2]. We set
r, = 64 and 7y 8 in our configuration to follow the con-
figuration in [2].

2.3. Visualization

We provide visualizations of multiple RIR filters generated by
the proposed FRA-RIR method and compare them to RIR filters
generated by other RIR simulation tools at 16 kHz sample rate:

1. RIR-generator (RIR-gen) [16]: RIR-generator is one of the
most widely-used implementation of ISM. We use the de-
fault configuration provided in the official Python implemen-
tation”.

Pyroomacoustics (PRA) [10]: The ISM-based room simula-
tion module in Pyroomacoustics assumes shoebox rooms and
considers walls as perfect reflectors. We use the default con-
figuration provided in the official documentation®. We do not
use the hybrid ISM and ray tracing method in this paper as
recommended in the toolbox.

3. gpuRIR [6]: gpuRIR is a GPU-accelerated tool with addi-
tional functionalities such as diffuse late reverberation mod-
eling, negative reflection coefficients and fractional delay.
We use the default configuration provided in the official ex-
ample®.

StoRIR [17]: StoRIR uses a random energy-rescaled impulse
train to estimate the RIR filter. Although it is not an ISM-
based method, we select it as one of the comparable methods
as it also generates the RIR filters in a stochastic way. We use
the default configuration provided in the official implementa-
tion®.

We also randomly selected a real RIR in the BUT ReverbDB
dataset® [18] and use it to compare with the simulation outputs.
Figure 1 shows the waveforms and the frequency responses
evaluated by the magnitude spectrograms of the simulated and
real RIR filters calculated with a window size of 256 point and
hop size of 64 point, respectively. We can observe that com-
pared to RIR-gen and PRA, the gpuRIR method which makes
use of diffused late reverberation simulation can generate more

Zhttps://github.com/audiolabs/rir-generator
3https://pyroomacoustics.readthedocs.io/en/pypi-
release/pyroomacoustics.room.html
“https://github.com/DavidDiazGuerra/gpuRIR
Shttps://github.com/SRPOL-AUI/storir
OVUT_FIT_D105/MicIDO01/SpkID05_20170901_S/04
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realistic RIR filters, however we can still observe sweeping echo
patterns at the transition between early and late reflections. Due
to the characteristic of the filter generated by StoRIR, its fre-
quency pattern diverges from the realistic RIR the most among
all the filters. FRA-RIR generates a more realistic frequency
pattern in both early and late reverberations compared to the
real RIR.

3. Experiment configurations
3.1. Data Configuration

We evaluate the effectiveness of the proposed FRA-RIR method
in the speech denoising and joint speech denoising and derever-
beration tasks. We perform both offline data simulation and on-
the-fly data simulation with the aforementioned five RIR sim-
ulation methods. During the training phase, the simulated RIR
filters are convolved with randomly sampled speech utterances
from AISHELL-2 [19] and DNS challenge [20] at a sample rate
of 16k Hz, and we truncate the utterances to 6 seconds. One or
two noise utterances are also randomly sampled from the DE-
MAND [21], MUSAN [22] and DNS challenge datasets, and
the RIR filters are simulated and convolved accordingly. For
other ISM-based methods, the room size is randomly sampled
from 3 x 3 x 3m? to 12 x 12 x 4 m® (length x width x height).
All noise utterances are summed to generate a single noise sig-
nal, and the signal-to-noise ratio (SNR) between the speech and
noise signals is randomly sampled between [-8, 6] dB. The
number of utterances in the offline training dataset is 50000
(=110 hours). During the test phase, real RIR filters from the
DNS challenge dataset is used to simulate 500 utterances. All
other configurations are kept identical for all RIR simulation
methods.

3.2. Model Configuration

We use the convolutional, long short-term memory, fully con-
nected deep neural network (CLDNN) architecture for all ex-
periments [23]. We use 4 convolution layers, 2 LSTM layers
and 1 output layer in the model, and we generate complex ratio
mask (cCRM) [24] to extract the speech signals. Interested read-
ers may refer to the original paper for the details of the model
architecture. We use 32 ms window size, 16 ms hop size and
Hanning window for STFT. All models contain 3.3M parame-
ters.

3.3. Training and Evaluation Configurations

The training objective for all models is the combination of a
waveform-level L1 loss and a spectrogram-level L1 loss on both
real and imaginary parts. We use the Adam optimizer [25] with
the initial learning rate of 0.001, and we decay the learning rate
by a factor of 0.5 if no best training model is found in 3 consec-
utive epochs. We set the maximum number of training epochs
to be 50 and the training will be early stopped when no best
validation model is found in 5 consecutive epochs. All of our
experiments are conducted on one single server with 8 NVIDIA
Tesla P40 GPUs and 64 CPU cores using Pytorch [26] with a
per-GPU batch size of 16. For online training with on-the-fly
data simulation, the RIR filters are simulated in parallel using
CPU with 8 workers per data loader. We set the number of ef-
fective utterances the same in offline and online configurations
for a fair comparison.

For evaluation, we report (SNR), perceptual evaluation of
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Figure 1: Visualization of the simulated and real RIR filters by their waveforms and magnitude spectrograms.

Table 1: Comparison of different RIR simulation tools with offline (Off.) and online (On.) training configurations on speech denoising
and dereverberation tasks. * corresponds to the configuration where GPU is required.

Denoising Denoising & Dereverberation
Method SNR (dB) PESQ STOI SNR (dB) PESQ STOI Speed (s)
Off. On. | Off. On. | Offf. On. | Off.. On. | Offf. On. | Off. On.
Mixture 2.1 1.83 65.5 -6.7 1.57 62.5 -

gpuRIR [6] 8.1 - | 218 - 75.0 - 22 - 1.77 - 68.7 - 0.02%*

RIR-gen [16] | 8.1 - | 217 - 74.8 - 2.4 - 1.76 - 68.7 - 9.4
PRA [10] 77 86 | 209 221 | 740 758 | 22 27 | 1.68 181 | 67.3 68.1 0.88
StoRIR [17] | 80 86 | 203 223 | 738 754 | 25 27 | 1.79 187 | 699 70.1 0.89
FRA-RIR 83 87 | 222 231|754 760 | 25 29 |18 195|710 715 0.08

speech quality (PESQ)’ [27] and short-time objective intelligi-
bility (STOI)® [28] to measure the speech denoising and dere-
verberation performance of models trained with different RIR
simulation methods.

4. Results and analysis

Table 1 summarizes the performance of models trained with
data generated by different RIR simulation methods. We can
first observe that for the offline training configuration, mod-
els trained with all RIR simulation methods have similar de-
noising and dereverberation performance, while FRA-RIR is
slightly better than the others. For the online training configura-
tion with on-the-fly data simulation, all models have improved
performance compared with the offline training configuration,
while FRA-RIR is still slightly better than the others on all three
evaluation metrics. Moreover, the RIR simulation speed for
FRA-RIR is significantly faster than all other methods except
for gpuRIR which requires a GPU to perform the simulation’.
Since FRA-RIR not only saves the storage by on-the-fly simula-

7https://github.com/vBaiCai/python-pesq

8https://github.com/mpariente/pystoi

9We did not perform on-the-fly simulation for gpuRIR and RIR-gen,
because gpuRIR does not support CPU-only simulation in the data load-
ers and RIR-gen is too slow to finish the training procedure.
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tion but also significantly accelerated the training of the model
and generalizes well in realistic RIR filters, it proves the poten-
tial of FRA-RIR as an effective data augmentation method for
the training of speech processing systems.

5. Conclusion

In this paper, we proposed the fast random approximation
of room impulse response (FRA-RIR), a fast RIR simulation
method based on the image-source method (ISM) for data aug-
mentation purpose in the training of speech processing systems.
FRA-RIR bypassed the explicit calculation of the virtual sound
sources in ISM by randomly sampling the virtual sound source
distances and their reflection patterns. Without the need of a
specific computational device or platform, FRA-RIR can gen-
erate RIR filter up to 110 times faster than existing ISM-based
RIR simulation methods on a desktop-level CPU, enabling on-
the-fly data simulation for training various speech processing
models. Results on speech denoising and jointly denoising and
dereverberation tasks showed that models trained with FRA-
RIR can achieve on par or better performance than other RIR
simulation tools with a significantly faster simulation speed.
Future works include the application and validation of FRA-
RIR in other speech and audio processing tasks, and the exten-
sion of the method to microphone array scenarios.
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