ISCA Archive Interspeech 2023
ISCA Archive Interspeech 2023

High-Quality Automatic Voice Over with Accurate Alignment: Supervision through Self-Supervised Discrete Speech Units

Junchen Lu, Berrak Sisman, Mingyang Zhang, Haizhou Li

The goal of Automatic Voice Over (AVO) is to generate speech in sync with a silent video given its text script. Recent AVO frameworks built upon text-to-speech synthesis (TTS) have shown impressive results. However, the current AVO learning objective of acoustic feature reconstruction brings in indirect supervision for inter-modal alignment learning, thus limiting the synchronization performance and synthetic speech quality. To this end, we propose a novel AVO method leveraging the learning objective of self-supervised discrete speech unit prediction, which not only provides more direct supervision for the alignment learning, but also alleviates the mismatch between the text-video context and acoustic features. Experimental results show that our proposed method achieves remarkable lip-speech synchronization and high speech quality by outperforming baselines in both objective and subjective evaluations. Code and speech samples are publicly available.