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Abstract
Providing voice assistants the ability to navigate multi-turn con-
versations is a challenging problem. Handling multi-turn inter-
actions requires the system to understand various conversational
use-cases, such as steering, intent carryover, disfluencies, entity
carryover, and repair. The complexity of this problem is com-
pounded by the fact that these use-cases mix with each other,
often appearing simultaneously in natural language. This work
proposes a non-autoregressive query rewriting architecture that
can handle not only the five aforementioned tasks, but also com-
plex compositions of these use-cases. We show that our pro-
posed model has competitive single task performance compared
to the baseline approach, and even outperforms a fine-tuned T5
model in use-case compositions, despite being 15 times smaller
in parameters and 25 times faster in latency.
Index Terms: voice assistants, steering, intent carryover, dis-
fluency, entity carryover, repair, reference resolution, multitask
learning

1. Introduction
With voice assistants making large improvements recently, nat-
ural conversations with virtual assistants has become a more
common expectation. Users tend to interact with virtual assis-
tant in an increasingly contextual fashion, expecting them to
behave more like a human agent [1]. This brings out a growing
challenge: the understanding system behind a voice assistant
needs to be robust to several aspects of natural, conversational
language that have been traditionally difficult to deal with.

One line of challenges involves the ability to use context
from one turn to complete the understanding of another in multi-
turn conversations. This includes use-cases like steering (where
a follow-up turn is used to provide clarifying information to a
previous turn), intent carryover (where a follow-up turn im-
plicitly has the same intent as a previous turn, but for a differ-
ent entity) [2] and entity carryover (where a follow-up turn
refers to an entity in a previous turn, often through anaphora
or nominal ellipses) [3, 4, 5, 6]. Another set of challenges in-
volves artifacts in human speech that appear by virtue of hu-
mans changing their mind during a conversation, or beginning
a conversation without having fully decided their intent or how
they would like to convey it. This yields disfluencies (i.e., arti-
facts in speech such as filler words that don’t contribute to the
intent of a query and can be removed) and repair (where a user
corrects the intent and/or entity previously referenced) [7]. This
problem of understanding spoken language is further compli-
cated by the ability of these artifacts to mix with each other,
with these phenomena often appearing simultaneously in nat-
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ural language. We illustrate these problems with examples in
Table 1. The 5 aforementioned challenges are shown at the top,
with a pair of context and follow-up queries. We also present 2
compositional challenges at the bottom, where multiple conver-
sational challenges are involved.

Traditional approaches handle each of these challenges with
dedicated systems: entity carryover is often tackled with coref-
erence [8, 9] and ellipsis [10] resolution; intent carryover can
be treated as a form of slot carryover [11, 12]; disfluencies
can be solved as a sequence tagging problem [13]. While each
dedicated system offers competitive performance for each chal-
lenge, a solution for all challenges would involve cascading
these systems, which introduces error propagation, extra latency
and disk space, and management complexities. A unified prob-
lem formulation could yield a single, joint modeling solution.

One such formulation is query rewriting [14, 15, 16,
17], which reformulates contextual queries into their context-
independent counterparts. Examples of target rewritten queries
for all use cases and their combinations are shown in the Rewrite
column in Table 1. For example, for the composition of Entity
Carryover and Repair, given the context query “Who is Homer
Simpson’s eldest doctor” and the follow-up query “I said his el-
dest daughter”, the reference to the context entity Homer Simp-
son needs to be resolved along with a repair of the ASR error;
solving both then yields a self-contained query: “Who is Homer
Simpson’s eldest daughter”. While entity carryover [15, 17], in-
tent carryover [2, 16] (and their combinations), disfluency [18]
and repair [14] have been studied as query rewriting problems
individually, to the best of our knowledge, this is the first work
to look at all 5 challenges (including the under-studied chal-
lenge of handling steering) jointly, and to investigate composi-
tional challenges.

Many prior query rewriting works consider it a summariza-
tion task [2, 15, 16, 17, 19, 20]. While these models usually
offer competitive performance, they suffer from heavy latency
costs brought by the decoding loop, which would have a sig-
nificant impact on the responsiveness of a virtual assistant. To
mitigate this, text-editing rewrite models were proposed, which
output a sequence of edit actions (like deletion, insertion, swap
and reordering) instead of generating tokens. Applying these
edits on the source tokens yields the rewritten query, drasti-
cally reducing the output search space. In LaserTagger [21],
the authors use a single layer Transformer Decoder paired with
a BERT encoder [22] to reduce decoding latency. FELIX [23]
goes one step further using a non-autoregressive model with
tagging, reordering and inserting, eliminating the decoding loop
completely.

In this paper, we aim to address this latency issue with
a non-autoregressive edit-based model using composable edit-
actions. In addition, we evaluate the query rewriting problem in
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Table 1: Examples of conversational use cases and their compositions tackled in this work. Examples shown are author-created queries
based on anonymized and randomly sampled virtual assistant logs. Tokens marked in red indicate those marked for deletion. Tokens
marked in green or with a green underline are those marked to be replaced, while those marked in blue or with a blue underline are
the detected replacements. Note that colorization indicates a first step substitution, and underlines indicate a second substitution step
(which only ever occurs in compositional use cases).

Use Case Context Follow-up Rewrite
Steering Play Sweeny Todd [SEP] In my living room Play Sweeny Todd in my living room
Intent Carryover How old is Homer Simpson [SEP] What about Bart Simpson How old is Bart Simpson
Disfluency - [SEP] Take me to Suki Sushi no I said Fuki Sushi Take me to Fuki Sushi
Entity Carryover When does Rocket Sushi close [SEP] How long does it take to drive there How long does it take to drive to Rocket Sushi
Repair How far is San Jose by car [SEP] I meant San Francisco How far is San Francisco by car
Entity Carryover + Intent Carryover How tall is Homer Simpson [SEP] What about his wife How tall is Homer Simpson’s wife
Entity Carryover + Repair Who is Homer Simpson’s eldest doctor [SEP] I said his eldest daughter Who is Homer Simpson’s eldest daughter

a multitask setting, including compositional use cases, which,
to the best of our knowledge, is a first. Through experimental
evaluation, we show that our proposed approach has compet-
itive single- and multi-task performance compared to baseline
approaches on the target use cases, and can even surpass a fine-
tuned T5-small [24] model in use-case combinations, despite
being 15x smaller in parameters. Our main contributions are:

1. We propose a joint edit-based query rewrite model to han-
dle all five conversational understanding use cases and their
compositions.

2. We show that our non-autoregressive model achieves perfor-
mance close to or even better than strong baselines, with 25x
faster latency, 15x smaller disk size and 20x better composi-
tional data efficiency.

2. Data
Collecting data for conversational use cases that are not cur-
rently supported by the virtual assistant is challenging because
of the cold-start problem: users’ behavior attunes to the known
capability of the virtual assistant, and interactions targeting un-
supported use cases rarely exist. As a result, collecting such
data requires clever strategies and annotations, or partial syn-
thesis. Our data collection process starts by randomly sampling
virtual assistant logs from anonymized opt-in users, which we
use to create 6 datasets in total, 5 for each of the tasks we focus
on, and 1 containing compositions of the tasks, all of which are
either human annotated or synthetically created.

Our entity and intent carryover datasets start with identi-
fying consecutive query pairs with common entities or intents
between them. Given these pairs, annotators provide a contex-
tual query that simplifies the follow-up through entity or intent
carryover, similar to [16].

For our repair dataset, when users correct themselves by
manually editing ASR transcriptions, we extract the slot where
the correction was performed. We then use the slot to popu-
late synthetic templates such as (original turn, correction phrase
(”No I meant”, etc.) + slot, correction turn), where the first ele-
ment represents the context turn, the second element represents
the followup-turn, and the third element represents the rewrite.

We formulate our disfluency dataset similarly to our repair
dataset above, but use synthetic templates to stitch together the
correction slot inside the query, randomly adding interregnum
to simulate the disfluency.

For steering, we look at consecutive queries in which the
first query is an exact prefix of the second. The non-prefix part
of the second query helps us simulate what a user who wishes
to use a follow-up in a steering fashion might say.

Our compositional dataset is created through synthetic tem-
plates because their rarity makes collecting real-world data ex-
ceedingly difficult. Each template requires two of the afore-

mentioned tasks to be resolved. We identified 5 valid challenge
pairs, from which we created 20 unique templates. Templates
used to create training, validation and test sets are disjoint to
keep this task challenging. Random entities are then filled into
the templates to create the data.

Each of the 5 datasets contains 60k datapoints, and the com-
positional dataset contains 20k datapoints. Each dataset has an
8:1:1 training:validation:test split. On average, context turns
have 5.6 tokens, current turns have 5.2 tokens, rewritten turn
have 6.0 tokens, and 47% of tokens in the rewritten turn can
only be found in the context turn.

3. 5IDER
Our proposed method 5IDER (shown in Figure 1) is an encoder-
based model that learns to predict the defined edit operations to
accomplish rewriting across all use cases. In this section, we
first define these edit operations, then explain how our model ar-
chitecture and training objective help to learn these operations.

3.1. Rewriting with edit operations

To accomplish rewriting across all different use cases, it is es-
sential to capture the relationship between text spans within the
input sequence. For instance, in the example of entity carryover
shown in Table 1, the model needs to resolve the pronoun it in
the follow-up turn to the named entity Rocket Sushi mentioned
in the context. To achieve this goal, we define two edit oper-
ations, substitution and deletion, which are made possible by
three model components:
• Replacement detection: this component detects the replace-

ment, a text span which will substitute another text span to
make a self-contained rewrite.

• Replacement resolution: this component detects the replaced,
a text span to be substituted by the replacement.

• Deletion: this component detects tokens that need to be
deleted to complete a rewrite.

These edit operations act on the concatenated dialog his-
tory, in the form of context query + separator token ([SEP])
+ follow-up query. For single use case data, we apply the fol-
lowing post-processing steps to create the rewritten query: first,
apply deletion; second, apply substitution by deleting the re-
placement, and substituting the replaced with the replacement;
finally, extract the token sequence starting from the last [SEP]
to the end of the sequence (or the whole token sequence if no
[SEP]s are left). As an example, the replacement, replaced and
deletion for each of the 5 use cases are color coded in blue,
green and red in Table 1. This thus implies that, as in [2], the
output vocabulary of this design is limited to the input tokens.

This edit operation design differs from [21, 23]: instead
of general purpose edit operations, each use case has an inde-
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Figure 1: The proposed 5IDER architecture. The input text, the concatenation of two turns, is first encoded with TinyBert and an LSTM
encoder. Then, 5 edit operation predictors (one for each task), perform Replacement Detection, Replacement Resolution and Deletion
Detection for each task. Finally, all edit operations are applied in a post-processing step.

pendent interpretation of the operations. For entity carryover,
a substitution is akin to anaphora resolution, while for repair, a
substitution somewhat resembles entity linking. The motivation
behind this is to create a model architecture with the ability to
apply edit operations independently for each use case, automat-
ically solving use case composition by simply composing these
operations. An example is shown in Figure 1. In Who is Homer
Simpson’s eldest doctor [SEP] I said his eldest daughter, entity
carryover requires his being replaced by Homer Simpson’s, re-
pair requires Homer Simpson’s eldest doctor being replaced by
his eldest daughter, and [SEP] I said being deleted. To tackle
this, we need to modify the second step of our aforementioned
post-processing logic. We define the concept of substitution
dependency. A substitution is dependent on another, if its re-
placement contains the replaced of the other. In our example,
the repair substitution is dependent on the entity carryover sub-
stitution. We perform a topological sort for substitutions, ap-
plying those without dependencies and moving upwards. We
thus first apply the entity carryover substitution to obtain Who
is eldest doctor [SEP] I said Homer Simpson’s eldest daugh-
ter. After this, the repair’s replaced has to be adjusted from
Homer Simpson’s eldest doctor to eldest doctor. We then apply
the repair’s substitution to obtain Who is Homer Simpson’s el-
dest daughter [SEP] I said. Finally, after deletion, we have the
rewritten query Who is Homer Simpson’s eldest daughter.

3.2. Model Architecture

As shown in Figure 1, 5IDER takes as input the concatenation
of text from the context and the follow-up turn. The input se-
quence is then passed through a frozen TinyBert [25] model to
obtain contextualized embeddings of input tokens, which is then
further encoded with a trainable BiLSTM encoder.

To handle data with an arbitrary mixture of use cases, the
model contains 5 copies of the 3 components mentioned in Sec-
tion 3.1, one for each use case. First, the Replacement Detec-
tion (RD) head predicts which span in the input is a replace-
ment. This is modeled as a BIO sequence tagging task. As
shown in the running example, the entity “Homer Simpson’s” is
identified as the replacement in entity carryover, and “his eldest
daughter” in the repair use case. When no valid replacements
are predicted in a use case component (i.e., the output of the RD
head is O across the input sequence), the input sequence does
not require any substitutions for that use case (e.g., use cases
intent carryover, steering and disfluencies in the running exam-
ple). Second, the Replacement Resolution (RR) head identi-
fies the text that the replacement needs to substitute (i.e., the
replaced text). Concretely, biaffine attention [26] is employed

to perform self-attention to capture the relationship between in-
put tokens. Similar to the mechanism of locating the answer
span in machine comprehension, the attention distribution at
the position of the beginning (end) of the replacement is su-
pervised to attend to the beginning (end) of the corresponding
replaced, as shown by the solid green arrows. Finally, the Dele-
tion head, a binary classifier, is applied at each position to deter-
mine whether to delete (D) or keep (K) the token. The model
predicts these edit operations separately for each use case, and
they are then consolidated to form the final rewrite, as described
in Section 3.1 above.

3.3. Optimization

When optimizing the model, supervision is provided for all
three edit operation heads. For Replacement Detection, RD
heads across all use cases are optimized with the loss LRD ,
using cross-entropy (CE) between the ground-truth and the pre-
dicted RD sequence:

LRD =
1

|U |

|U|∑

u

T∑

i

CE(pRD
u,i , y

RD
u,i ) (1)

where u and i are respectively the indices for the use case and
input position. U is the total number of use cases; T is the
length of the input sequence; pRD

u,i ∈ R3 is the BIO prediction
at the position i for the use case u.

For Replacement Resolution, the RR heads are supervised
only within use cases where a replacement exists in the input
sequence, in which case the loss is defined as the sum of the
cross-entropy between the ground-truth and the predictions at
the positions of the replacement boundary (i.e., start & end):

LRR
u =

{∑
i={start,end} CE(pRR

u,i , y
RR
u,i ), replacement exists

0, otherwise
(2)

where pRR
u,i ∈ RT is the prediction over the input sequence. The

overall RR loss is added up across use cases:
LRR =

∑|U|
u LRR

u .
For Deletion, the deletion heads across all use cases are

trained with a binary signal for each input token:

LDel =
1

|U |

|U|∑

u

T∑

i

CE(pDel
u,i , y

Del
u,i ) (3)

where pDel
u,i ∈ R2 is the binary prediction on whether to keep or

delete the token at position i for the use case u.
The overall loss, L, used for model training is the sum of

all three losses with equal weight: L = LRD + LRR + LDel.
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Table 2: Model comparison in model size, disk size and latency.
Latency is measured on the same hardware and averaged across
test sets. Seq2Seq latency is set as 1 unit for ease of comparison.

Model No. Parameters Disk Size Relative Latency
Seq2Seq 4.5 M 17.9 Mb 1 x
LaserTagger 110 M 430 Mb 25.1 x
Felix 220 M 933 Mb 22 x
T5-Small 60.5 M 242 Mb 11.3 x
5IDER 4.2M 16.9 Mb 0.4 x

Table 3: Exact match accuracy (%) on different use cases and
their average under two training setups.

Model Intent Entity Repair Disfluency Steering Avg.
Singe-task training

Seq2Seq 94.9 84.4 78.0 73.1 98.2 85.7
LaserTagger 84.7 49.3 64.6 63.0 99.9 72.3
Felix 96.0 83.7 85.6 77.4 97.1 88.0
T5-Small 96.3 90.6 83.5 82.0 95.1 89.5
5IDER (ours) 95.5 86.5 80.2 79.2 100.0 88.3

Multi-task training
Seq2Seq 95.4 84.5 78.9 75.6 97.1 85.3
LaserTagger 84.5 49.1 62.9 60.0 99.8 71.3
Felix 88.1 1.7 80.9 25.0 44.1 48.0
T5-Small 95.7 89.3 83.3 83.6 93.1 89.0
5IDER (ours) 95.3 86.1 81.0 80.6 98.9 88.4

4. Experimental Setup
Hyperparameters For 5IDER, we use a 192-dim frozen Tiny-
BERT embedding [25] and 128-dim for all LSTM hidden states,
biaffine attention RR heads, classifiers in RD, and deletion
heads. During training, the model is trained with batch size
64, learning rate 6e-4 with Adam and dropout of 0.2.

Baseline Systems We compare 5IDER with baseline mod-
els to show the efficacy of the designed editing mechanism
in our model. The first baseline is a BiLSTM-based seq2seq
model1 with a copy mechanism [27]. This model is close to our
system in terms of model capacity: with the same set of hyper-
parameters, its model size is approximately twice that of 5IDER
due to the additional decoder. We also compare against gen-
erative (T5-Small [24]) and edit-based (LaserTagger [21] and
FELIX [23]) transformer models to see if the rewriting perfor-
mance can be boosted at the cost of run-time speed. The input to
the two generation baselines are the same as 5IDER. All base-
lines are fine-tuned and optimized across all use cases.

5. Results
5.1. Inference Time

We compare the models in terms of model size, disk size and la-
tency in Table 2. As shown, 5IDER has the best latency and disk
size out of the five, occupying less than 20Mb of disk space and
being over 25x faster than T5-Small, LaserTagger and Felix.

5.2. Single-Task and Multi-Task Experiments

We test the models’ capacity by training and testing on the same
use case (single-task training), as shown in the first part of Ta-
ble 3. In general, all models perform similarly well across tasks,
except for LaserTagger, which struggles on some use cases.2

1We also experimented with similar sized Transformer variants, and
found that even with 3 times more parameters, Transformers still per-
form worse than an LSTM.

2LaserTagger’s edit operations include swapping sentence order,
deletion and insertion with a limited vocabulary. It thus cannot consis-
tently support use cases like entity carryover, which require a text span
from the context query to be copied to the middle of the follow-up.
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Figure 2: Performance of various approaches on use-case com-
position. The x-axis shows training data size (in number of data
points), while the y-axis shows Exact Match Accuracy (%).

The general trend of good performance indicates that single-
task training is straightforward for these models.

The more challenging but practical setup is the multi-task
setting, where the same model needs to handle various linguis-
tic patterns. Results are shown in the second part of Table 3.
Although the task difficulty increases, 5IDER is still capable
of tacking all 5 use cases, performing competitively with the
strong T5 baseline (with only a 0.6% gap on average) in spite
of its 25x latency and disk size benefit. However, the other two
edit-based models perform much worse than 5IDER, despite us-
ing a BERT base encoder. Among them, Felix is unable to learn
the different rewriting patterns in joint training (with an accu-
racy of 1.7% on the Entity use case). This indicates that our
edit-based model is not only light-weight and low-latency, but
also good at generalization in a multitask setting.

5.3. Few-shot Use Case Composition

We also experimented with challenging compositional use
cases; our experimental results are shown in Figure 2. All mod-
els are trained with multitask single use case data, with a mix-
ture of compositional data with varying dataset sizes. The x-
axis shows the amount of compositional data used, while the
y-axis shows the corresponding exact match accuracy on the
test set. Note that the set of templates used to generate the train
and test sets are disjoint, which ensures that the task cannot be
solved through simple memorization.

Due to the aforementioned limitations, we find that
LaserTagger and Felix perform relatively poorly irrespective
of compositional data size. Interestingly, we find that 5IDER
consistently outperforms the Seq2Seq model: in particular,
5IDER with no compositional training data outperforms the
best Seq2Seq model trained with 5k data points. This indicates
that 5IDER generalizes substantially better than the baseline
systems on compositional use cases, without additional train-
ing data.

In addition, 5IDER’s zero-shot use case composition per-
formance is very close to that of the much larger T5 model.
With 100 training data points, 5IDER achieves performance
competitive to that of the best T5 model, and with just 500 train-
ing data points, 5IDER significantly outperforms the T5 model
trained with 10k data points, using 1/20th the data, showcasing
its great data efficiency on compositional use cases.

6. Conclusion
This work proposed a generalizable, multitasking, non-
autoregressive query rewriting framework that handles 5 con-
versational use cases and their combinations. This model
showed competitive performance in each use case, and signif-
icantly outperformed a fine-tuned T5-Small model in use case
composition, while being 15 times smaller and 25 times faster.
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