
Model-Internal Slot-triggered Biasing for Domain Expansion in Neural
Transducer ASR Models

Yiting Lu1,2∗, Philip Harding2, Kanthashree Mysore Sathyendra2, Sibo Tong2, Xuandi Fu2, Jing
Liu2, Feng-Ju Chang2, Simon Wiesler2, Grant P. Strimel2

1Cambridge University, UK 2Amazon Alexa
ytl28@cam.ac.uk, pjhard@amazon.co.uk

Abstract
Personal rare word recognition is an important yet challeng-
ing task for end-to-end speech recognition. Contextual biasing
has demonstrated success in tackling this problem. Though ef-
fective in improving rare word recognition, these mechanisms
can lead to errors due to false-biasing while facing further chal-
lenges when attempting to expand them to many domains. To
address these limitations, in this work we propose a neural
biasing design with a streaming model-internal slot classifier,
trained to categorise the domain of each word piece before it
is emitted. The neural biasing module can therefore be trig-
gered in a controlled way, permitting natural scaling to many
domains while reducing false-biasing and computational cost.
Experiments on diverse domain slot types of application names,
communications and playlist names demonstrate the proposed
architecture results in 26% to 58% relative improvements on
personal rare word recognition with minimal impact (0.6% rel.)
on general data.
Index Terms: speech recognition, RNN-T, neural-transducer,
contextual biasing, personalisation

1. Introduction
Despite recent advances in end-to-end automatic speech recog-
nition (ASR) [1, 2], ASR systems still face challenges in ac-
curately recognising rare words and phrases. Rare words are
words that are not represented sufficiently in the training data,
such as proper nouns or technical terms [3]. Personal rare word
recognition [4, 5] is especially important for voice assistant ap-
plications since it allows users to interact with the system nat-
urally, with ASR capable of catering to each user’s personal
context. This adaptation improves recognition for each user’s
customised preferences and therefore the application as a whole
can execute personalised requests.

One standard approach to tackle rare word recognition is
to adopt language model (LM) shallow fusion [6] at inference
time. However, this method requires training of external lan-
guage models and is also particularly sensitive to an LM fu-
sion coefficient. Moreover, shallow fusion does not account
for acoustic information which provides a useful signal for de-
termining when to bias, especially when given an ambiguous
textual prefix. Neural biasing (NB) [7, 8, 9, 10, 11, 12] is
another commonly adopted approach for contextual biasing,
where internal model states are updated using dynamic con-
text (eg. user’s playlists, devices etc.) in order to target the
recognition process towards specific outcomes. NB is trained in
conjunction with the main neural ASR architecture and usually
outperforms shallow fusion [10, 11]. However, scaling NB to

*this work was carried out during an internship at Amazon Alexa

multiple domains/slots (termed ‘horizontal scaling’) can pose
significant challenges, due to increased catalogue sizes and in-
ference latency. Furthermore, in most NB approaches, biasing
is active for all time frames contributing to increased latency.
To address these issues, Slot-Triggered Biasing (STB) [13] was
proposed. STB augments the ground-truth ASR transcripts with
special tags to indicate the start and end of biasing for different
slots, ensuring that biasing is activated only when predicting
slot content. However, STB requires retraining the ASR model
from scratch due to the added special tags.

In this work, we propose a streaming model-internal slot
classifier to horizontally scale contextual biasing to multiple do-
mains. The classifier is conditioned on the internal states of the
ASR model and is trained to predict the slot-type for the word
piece being predicted. The neural biasing module can therefore
be triggered in a controlled manner using the internal gating
mechanics. Additionally, the predicted slot-types can be used
to determine when biasing is required and also to narrow down
the catalogues used for biasing, resulting in reduced inference
latency. Our modular approach also allows for easy integration
of the classifier component with a pretrained core ASR model
without requiring retraining. The proposed approach typically
achieves higher accuracy on personalised entities than standard
attention-based biasing [10] and comparable accuracy to STB,
while minimising degradation on general utterances. We also
demonstrate that the proposed model-internal slot classifier is
able to strike a balance between high accuracy and low la-
tency by running a top-K/probability controlled domain selec-
tion during inference.

2. Contextual Biasing
The contextual adapter proposed in [10, 11] is used as a build-
ing block in this work to achieve contextual biasing for recur-
rent neural network transducer (RNN-T) ASR models [1]. The
central idea of this approach is to influence the ASR model pre-
dicted posterior by adding an augmenting biasing vector to the
encoder and/or decoder states according to the catalogue infor-
mation. The design comprises two components: a catalogue
encoder, and a biasing adapter.
Catalogue Encoder The catalogue encoder transforms a list of
contextual entities C = [c1, c2, ..., cK] into a set of embed-
ding representations. This is accomplished with a bidirectional
LSTM layer, which encodes the word-piece tokenised catalogue
entities into embeddings Ce.
Biasing Adapter The biasing adapter (BA) accounts for the
biasing information generated from the catalogue encoder as
well as the encoder and/or decoder states, and adapts the inter-
mediate representations from the neural transducers (encoder
and/or decoder states) to bias towards the word pieces of in-

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

1324 10.21437/Interspeech.2023-1010

terest. The adapter is implemented with a multi-head attention
mechanism [14], which attends over the encoded list of contex-
tual entities to produce the biasing vectors that are added to the
encoder and/or decoder states. In this work, the encoder repre-
sentation ht is used as the query to generate the biasing vector
bt, which is added back to the encoder representations:

bt = BA(ht,C
e); ĥt = ht + bt (1)

An additional <no bias> token is added to all catalogue lists
similar to [9, 10], allowing the BA to output a low-magnitude
biasing vector when an audio frame does not require biasing.

Practical Considerations and Limitations The standard con-
textual adapter is trained with the core RNN-T frozen and with
the biasing mechanism activated for all audio frames, similar to
[10]. It relies on the <no bias> token to implicitly suppress
biasing in order to limit false-biasing. Also, the vanilla contex-
tual adapter operates with only a single catalogue list. However,
to achieve biasing towards different domains, one must account
for multiple catalogues. When scaling to multiple catalogues,
a naı̈ve approach would be to concatenate all catalogues into a
single one. However, this strategy makes the catalogue list be-
come much longer, leading to significant latency implications,
increased confusions and signal dilution. Our model introduced
in Section 4 trains a model-internal slot classifier, which aims to
– (1) allow easy scaling to multiple slot catalogues, while max-
imising the accuracy gains provided by the contextual signals,
and (2) limit when biasing is active, thus reducing latency.

3. Related Works
STB [13] was proposed to address the limitations of the con-
textual adapters. STB selectively activates the biasing module
by augmenting the ASR transcript with slot opening and clos-
ing tags. The tags can then be used to activate / deactivate the
contextual adapter. While STB was previously shown to be an
effective method of scaling contextual biasing to multiple do-
mains, the method has some drawbacks. For instance, the base
ASR model must be retrained every time a new slot type is en-
abled. Meanwhile, the base ASR accuracy is not guaranteed to
be preserved since the slot prediction is entangled with the ASR
prediction.

Another related work is on Multi-Task Spoken Language
Understanding (SLU) [15] where the RNN-T model jointly pre-
dicts the ASR transcripts and slot-types associated with each
word-piece using a streaming slot-classifier trained using cross-
entropy loss.

4. Model-Internal Slot Classifier
In our work, we propose to train a model-internal slot classifier
that determines the relevant slot type (domain) of the word piece
to be generated. This is used to guide the encoder based contex-
tual adapter to activate biasing accordingly. The slot classifier
also acts as a filtering/selection mechanisms when multiple slot
catalogues are used. In addition to supported slot-types, we also
introduce the other class to our slot-classifier. When the pre-
dicted slot is the other class (i.e. common words), biasing can
be explicitly shut down to avoid false-biasing. When the pre-
dicted slot is not other, biasing is activated for the slot cata-
logue that corresponds to the predicted slot. By limiting biasing
to the selected catalogues, the contextual adapter can easily hor-
izontally scale across multiple slot catalogues without increas-
ing model latency. As shown in Figure 1, the model-internal

Figure 1: Model-Internal Multi-Task Contextual Adaptor.

slot classifier has two components: the slot classifier generates
a probability distribution over slot types; and the slot combiner
determines how to make use of the classifier’s slot posterior to
choose among the biasing vectors {ba, bb, bc} corresponding
to the slot catalogues {Ca,Cb,Cc}. The light-weight model-
internal slot classifier can be trained separately from the core
RNN-T, and allows for natural scaling to multiple slot types,
without re-training models from scratch.

4.1. Slot Classifier Input Features

The slot classifier can be conditioned on the encoder state ht,
the decoder state hu, or a combination of the two. In this work,
simple addition was adopted for the join operation in the clas-
sifier. The encoder states have length T , the decoder network
states have length U , and the combination of the two leads to a
grid state space of T × U .

4.2. Slot Classifier Architectures

The simplest approach is to use a stateless classifier, i.e. feed-
forward network. Alternatively, stateful layers such as LSTM
can encode historical context which may be beneficial for slot
classification. Applying recurrent layers to encoder- or decoder-
conditioned models is straightfoward, but is complex when con-
ditioning classification on joint states. To allow us to make use
of both joint network states and stateful model layers we split
the classifier network into decoder-only and encoder-only sub-
networks, the outputs of which are passed through the joint op-
eration and then projected to the number of slot classes.

4.3. Training Loss

The neural biasing training mainly consists of two main com-
ponents: the slot classifier and the contextual adapter. The core
RNN-T model (encoder, decoder and joint networks shaded in
grey in Figure 1) is kept frozen throughout the biasing train-
ing. In this work, the slot classifier and the contextual adapter
were jointly trained using a combination of the RNN-T loss and
cross-entropy loss for slot-prediction [15].

Cross entropy (CE) Loss Each word-piece yw
u is associated

with a slot type ys
u ∈ S where S is the set of supported slot

types along with the other class. We apply one of the follow-
ing CE loss formulations to supervise the slot classifier training:

Lce = − 1
U

∑U
u=0 y

s
u logP (ys

u|hu) (2)

Lce = − 1
U

∑U
u=0

1
T

∑T
t=0 y

s
u logP (ys

u|ht) (3)

Lce = − 1
U

∑U
u=0

1
T

∑T
t=0 y

s
u logP (ys

u|hu,ht) (4)

Here, ys
u is the slot type associated with word-piece yw

u ; ht,
hu are encoder and decoder states respectively. For the encoder

1325

only (eqn. (3)), and the encoder plus decoder network condi-
tioned classifiers (eqn. (4)), the CE loss is averaged over all
time steps since there is no time-aligned slot annotation avail-
able.

To further enhance time alignment, we also derive a vari-
ation of the CE loss where the loss is weighted along the time
axis according to an alignment coefficient λt,u.

Lce-α = − 1

U

U∑

u=0

T∑

t=0

λt,uy
s
u logP (ys

u|hu,ht) (5)

The forward state used for the RNN-T loss calculation (αt,u =
P (yw

1:u|x1:t) as defined in [1]) roughly highlights the most
probable path in the T × U grid. It can therefore be used to
guide the CE loss when ground truth alignment is not available.
In this work, the vanilla RNN-T logits are used to compute an
approximated α̂t,u, and the alignment coefficient λt,u is a nor-
malised version of α̂t,u over the time axis T :

λt,u =
α̂t,u∑T

t=0 α̂t,u
; where α̂t,u = P (yw

u |x0:t) (6)

RNN-T Loss Following the contextual adapter training dis-
cussed in [10], the standard RNN-T loss was adopted. In or-
der to use RNN-T loss (Lrnnt) to implicitly constrain the slot
classifier, a soft slot combination approach was adopted dur-
ing training (as discussed in Section 4.4) and the RNN-T loss
is expected to complement the CE loss to further improve the
classifier.

4.4. Slot Combiner

Soft Combination The slot classifier generates a slot probabil-
ity distribution over S given the encoder and/or decoder states,
which can be used as weights to combine the biasing vectors:

bu,t =
∑|S|

s=1 P (ys
u|hu,ht) b

s
u,t; bsu,t = BA(ht,C

e
s) (7)

where bu,t is the final biasing vector at time t step u; the weight
coefficient P (ys

u|hu,ht) is the slot posterior and Ce
s is the as-

sociated slot catalogue embeddings. Soft Combination is used
during training since it is differentiable and allows gradients to
back propagate through the classifier during training.

Top-K / Probability Cap Selection During inference, to re-
duce the computational complexity of cross-attention, we limit
slot catalogues to only the most probable slots at each decoding
step. We explore two options: a) Top-K: account for the top-K
probable slots; b) Probability Cap Selection (Pcap): account
for slots which make up x% of the total probability mass. For
case b), slot posteriors were first sorted from highest to low-
est. The probability cap x% is then imposed by processing the
probable slot types in-order until the probability cap is reached.
After applying the slot selection criteria, the chosen slots were
still weighted by the slot posterior to enforce consistency be-
tween training and inference.

5. Experimental Analysis
5.1. Dataset and Evaluation Metric

We used an in-house de-identified American English voice as-
sistant dataset with each utterance consisting of audio, tran-
scription and catalogues of contextual entities. Utterances
were randomly sampled from the voice assistant traffic across
more than 20 domains including Communications (Comms),
SmartHome, and Music. We focused on applying contextual
biasing to three domains - Comms, Music and Applications.

For training contextual adapters, we split training data into ‘per-
sonalised’ and ‘non-personalised’ partitions based on whether
utterances contain content from our target use-cases. Training
sets contain a mixture of human- and machine- transcribed ut-
terances. We used approximately 400 hours human-transcribed
personalised data for Comms, 100 hours for Music, and 500
hours for application launch phrases. The non-personalised
human-transcribed dataset contained approximately 66k hours.
Slot annotations were obtained using an in-house entity tagger.

We used a mix of personalised and non-personalised data
to train the contextual biasing adapters, with exact weights for
each system stated in the results section. Where a model was
trained to bias towards multiple slots, equal weighting was
applied to data associated with each domain. We report re-
sults on a 34k utterance general dataset, and three personalised
datasets - a 34k utterance Comms dataset, a 4.4k utterance Mu-
sic dataset and a 22k utterance application launch dataset. Same
as [11, 10], we report the relative word error rate reduction
(WERR%) on the general dataset, and the relative slot word
error rate reduction (WERR-S%) for named entities on the per-
sonalised datasets. In all cases the baseline model is an RNN-T
model without contextual biasing.

5.2. Model Configurations

The input audio features are 64-dimensional log filter-bank en-
ergies extracted every 10 ms with a window size of 25 ms.
Three consecutive frames are stacked, after which downsam-
pling by a factor of three is applied, resulting in 192 feature
coefficients per frame. Ground truth tokens are tokenised using
a word-piece tokeniser with vocabulary size of 4000 [16, 17].
The RNN-T encoder network consists of five LSTM layers,
each with 1280 units, with a time-reduction layer (downsam-
pling factor=2) at layer three. The prediction network consists
of two LSTM layers with 1024 units per layer. The outputs
from the encoder and prediction network are projected through
a feed-forward layer to 1024 units. We use a simple addition
for the join operation, followed by the tanh activation before
further projecting to 4001 units (vocabulary size + blank label)
in the output layer. Decoding is performed using the standard
RNN-T beam search [1] with a beam size of seven.

The feed-forward (FF) slot classifier adopts a hidden size of
256, which then projects to a distribution over four slot classes
(Comms, AppName, PlaylistName, other). For contextual bi-
asing we use the attention-based adapter as in [10]. The core
RNN-T model was frozen during the slot classifier and contex-
tual adapter training. The models were trained using the Adam
optimiser and a warmup-hold-decay learning rate schedule with
3k steps warm-up, 72k steps hold, and 25k steps decay. We use
a maximum learning rate of 8× 10−4 and a minimum learning
rate of 6.25×10−5 for training the unconstrained adapters, and
a maximum learning rate of 1.6 × 10−3 when training models
with internal slot classifiers. The contextual adapter has 608k
parameters (< 0.5% of the base RNN-T parameters) while the
FF and LSTM slot classifiers have 263k and 279k parameters,
respectively. The maximum catalogue size for each domain is
set to 300 during training and 5000 during inference to fit within
memory.

5.3. Experimental Results

Table 1 compares the performance of the proposed methods to
models with contextual biasing trained on individual catalogues
(ID1-3), merged catalogues (ID4) [10] and slot-triggered bias-
ing (ID5) [13]. When evaluating with soft slot combination we

1326

Table 1: Results using proposed slot classifier with soft slot selection.

ID Inputs Loss Architecture Non-personalised General AppName Comms PlaylistName
data weight WERR (%) WERR-S (%) WERR-S (%) WERR-S (%)

1 - Lrnnt 1 catalogue (App) 0.70 0.6 20.1 - -
2 - Lrnnt 1 catalogue (Comms) 0.70 -2.0 - 43.1 -
3 - Lrnnt 1 catalogue (Playlist) 0.70 0.2 - - 39.5
4 - Lrnnt Merged catalogues 0.70 -1.6 22.5 37.1 49.1
5 - Lrnnt Slot-Triggered Biasing 0.00 -1.2 33.3 45.1 49.6
6 enc+dec Lrnnt FF 0.25 -2.2 35.0 45.4 54.8
7 enc+dec Lrnnt + Lce FF 0.25 -2.0 33.3 45.1 54.2
8 enc+dec Lrnnt + Lce−α FF 0.25 -2.7 34.1 45.4 55.7
9 dec Lrnnt + Lce FF 0.25 -2.7 30.5 44.3 54.8
10 enc Lrnnt FF 0.25 -2.5 32.9 45.2 57.6
11 enc+dec Lrnnt + Lce LSTM 0.25 -1.4 34.5 45.4 59.6
12 enc+dec Lrnnt + Lce LSTM 0.40 0.8 30.1 43.2 61.4

find that the models can be effectively trained with RNN-T loss
(Lrnnt) alone (ID6), with the introduction of cross-entropy loss
(Lce) resulting in comparable accuracy on slot content, with
marginally reduced degradation on general utterances (ID7).
Soft slot combination requires all entities in all catalogues to be
processed for every emission step. In Table 2 we compare mod-
els trained with the three different loss configurations on top-1,
top-2 and Pcap slot selection. We find that cross-entropy loss
is essential when selecting the top-1 slot type during decoding
and that introducing time alignment information by weighting
the cross-entropy loss by α (Lce−α) further improves perfor-
mance on slot content, but results in additional degradation on
general data (ID8).

Table 2: Comparison of feed-forward slot classification models
trained with different losses in terms of Comms WERR-S (%).

ID Loss Slot Selection Method
Soft Top-1 Top-2 Pcap=0.8

6 Lrnnt 45.6 -0.1 44.9 43.6
7 Lrnnt + Lce 45.3 42.4 45.0 44.9
8 Lrnnt + Lce−α 44.9 45.0 45.2 45.1

Looking next at the features used as input to the slot clas-
sifier, we find that a model conditioned only on encoder states
(ID10) performs on-par with the model trained on encoder and
decoder states (ID7) in terms of WERR-S, but that the model
trained using both states degrades less on general data. Con-
ditioning the slot classifier only on decoder states is found to
slightly degrade performance (ID9); the reason for this is the
lack of semantic context in some utterances. Table 3 illustrates
this in more detail, where WERR-S is broken down on Comms
data based on whether there is any spoken context before the
target entity. While decoder-conditioned slot classifiers perform
strongly on utterances with spoken context, there is a clear dif-
ference on utterances without. We hypothesise that models con-
ditioned on encoder states are able to take advantage of the ten-
dency of the model to delay token emission [18, 19], with clas-
sification then based on some limited future acoustic context.
STB is also found to perform well without context, suggesting
it too benefits from acoustic lookahead.

Table 3: Impact of availability of prior within-utterance context
on Comms WERR-S (“call name” vs. “name”).

ID Inputs Architecture With Without
context context

2 – 1 catalogue (Comms) 44.5 40.8
5 – Slot-Triggered Biasing 46.5 43.9
7 enc+dec FF 46.5 42.7
9 dec FF 47.1 37.8

10 enc FF 46.2 43.3

Next, we look at the architecture of the slot classifier itself.
Accuracy across all three slots is improved with a stateful clas-
sifier (ID11), with degradation on general data also decreasing.
Despite these improvements we still observe some degree of
false biasing. We therefore tuned the weights applied to person-
alised and non-personalised data during training. By increasing
the weight of non-personalised data from 0.25 to 0.4 (ID11 and
ID12, respectively) we were able to eradicate degradation on
general data at the cost of some reduced improvements on App
and Comms slot content.

Finally, we evaluate the proposed model (ID12) with the
different slot selection methods described in Section 4.4. Re-
sults are reported in Table 4. Top-1 slot selection is found to
reduce improvements across all slot types. We found that the
models sometimes assigned higher probability to the other
class in cases where a particular slot type should have been pre-
dicted; with top-1 slot classification, a non-other slot prediction
(which would result in biasing) was made in only 15% of emis-
sion steps for utterances in the App domain, i.e. an average of
0.15 catalogues were processed per emission step. For top-2 slot
selection at least one catalogue will be processed per emission
step, and an average of 1.01 catalogues was processed per emis-
sion step. A more dynamic method of selecting slots, expected
to better generalise to larger sets of domains, is to select the top-
K slots while the cumulative probability mass remains below a
particular threshold (Pcap). With a threshold of 0.8, accuracy
lies between Top-1 and Top-2, with 0.24 catalogues processed
per emission step on average for App domain utterances.

Table 4: Decoding strategy using LSTM-based model (ID12)

Slot General AppName Comms Playlist
Selection WERR WERR-S WERR-S WERR-S

Soft 0.8 30.1 43.2 61.4
Top-1 -0.6 23.3 39.9 55.7
Top-2 0.4 30.1 42.6 58.1

Pcap=0.8 -0.6 26.9 42.4 58.7

6. Conclusions
In this work, we proposed a model internal slot classifier which
can be used to horizontally scale contextual biasing to multiple
domains. The proposed method has a number of advantages
compared to existing methods of horizontal scaling, achieving
comparable accuracy on personal rare words while reducing the
risk of degrading recognition accuracy on general data. The
method is easy to train on top of an existing ASR model and
is efficient at run-time; with the proposed Pcap slot selection
method we demonstrated how, on average, 0.24 catalogues were
processed per emission step with our proposed method when
considering three domains.

1327

7. References
[1] A. Graves, “Sequence Transduction with Recurrent Neural Net-

works,” in Proceedings of the 29th International Conference on
Machine Learning (ICML), 2012.

[2] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han,
S. Wang, Z. Zhang, Y. Wu et al., “Conformer: Convolution-
augmented Transformer for Speech Recognition,” in Proceedings
of Interspeech, 2020.

[3] C. Peyser, S. Mavandadi, T. N. Sainath, J. Apfel, R. Pang, and
S. Kumar, “Improving Tail Performance of a Deliberation E2E
ASR Model Using a Large Text Corpus,” in Proceedings of Inter-
speech, 2020.

[4] T. N. Sainath, R. Prabhavalkar, S. Kumar, S. Lee, A. Kannan,
D. Rybach, V. Schogol, P. Nguyen, B. Li, Y. Wu et al., “No Need
for a Lexicon? Evaluating the value of the Pronunciation Lexica
in End-to-End Models,” in Proceedings of ICASSP. IEEE, 2018,
pp. 5859–5863.

[5] A. Bruguier, F. Peng, and F. Beaufays, “Learning Personalized
Pronunciations for Contact Name Recognition,” in Proceedings
of Interspeech, 2016, pp. 3096–3100.

[6] D. Zhao, T. N. Sainath, D. Rybach, P. Rondon, D. Bhatia, B. Li,
and R. Pang, “Shallow-Fusion End-to-End Contextual Biasing,”
in Proceedings of Interspeech, 2019.

[7] D. Le, G. Keren, J. Chan, J. Mahadeokar, C. Fuegen, and M. L.
Seltzer, “Deep Shallow Fusion for RNN-T Personalization,” in
Proceedings of the IEEE Workshop on Spoken Language Technol-
ogy, 2021.

[8] M. Jain, G. Keren, J. Mahadeokar, G. Zweig, F. Metze, and
Y. Saraf, “Contextual RNN-T for Open Domain ASR,” in Pro-
ceedings of Interspeech, 2020.

[9] G. Pundak, T. N. Sainath, R. Prabhavalkar, A. Kannan, and
D. Zhao, “Deep context: end-to-end contextual speech recogni-
tion,” in Proceedings of the IEEE Workshop on Spoken Language
Technology, 2018.

[10] K. M. Sathyendra, T. Muniyappa, F.-J. Chang, J. Liu, J. Su, G. P.
Strimel, A. Mouchtaris, and S. Kunzmann, “Contextual Adapters
for Personalized Speech Recognition in Neural Transducers,” in
Proceedings of ICASSP, 2022.

[11] F.-J. Chang, J. Liu, M. Radfar, A. Mouchtaris, M. Omologo,
A. Rastrow, and S. Kunzmann, “Context-Aware Transformer
Transducer for Speech Recognition,” in 2021 IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU), 2021,
pp. 503–510.

[12] G. Sun, C. Zhang, and P. C. Woodland, “Minimising Bias-
ing Word Errors for Contextual ASR With the Tree-Constrained
Pointer Generator,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 31, pp. 345–354, 2023.

[13] S. Tong, P. Harding, and S. Wiesler, “Slot-triggered Contextual
Biasing for Personalized Speech Recognition using Neural Trans-
ducers,” in Proceedings of ICASSP, 2023.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is All You Need,”
Advances in neural information processing systems, 2017.

[15] X. Fu, F.-J. Chang, M. Radfar, K. Wei, J. Liu, G. P. Strimel, and
K. M. Sathyendra, “Multi-Task RNN-T with Semantic Decoder
for Streamable Spoken Language Understanding,” in Proceedings
of ICASSP. IEEE, 2022, pp. 7507–7511.

[16] R. Sennrich, B. Haddow, and A. Birch, “Neural Machine Trans-
lation of Rare Words with Subword Units,” in Proceedings ACL,
2015.

[17] T. Kudo, “Subword Regularization: Improving Neural Network
Translation Models with Multiple Subword Candidates,” in Pro-
ceedings ACL, 2018.

[18] A. Tripathi, H. Lu, H. Sak, and H. Soltau, “Monotonic Recurrent
Neural Network Transducer and Decoding Strategies,” in Pro-
ceedings of the IEEE Workshop on Automatic Speech Recognition
and Understanding, 2019, pp. 944–948.

[19] J. Mahadeokar, Y. Shangguan, D. Le, G. Keren, H. Su, T. Le, C.-F.
Yeh, C. Fuegen, and M. L. Seltzer, “Alignment Restricted Stream-
ing Recurrent Neural Network Transducer,” in Proceedings of the
IEEE Workshop on Spoken Language Technology, 2021, pp. 52–
59.

1328

