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Abstract
Accented text-to-speech (TTS) synthesis seeks to generate
speech with an accent (L2) as a variant of the standard version
(L1). How to control the intensity of accent is a very interesting
research direction. Recent works design a speaker-adversarial
loss to disentangle the speaker and accent information, and then
adjust the loss weight to control the accent intensity. However,
there is no direct correlation between the disentanglement
factor and natural accent intensity. To this end, this paper
proposes a new intuitive and explicit accent intensity control
scheme for accented TTS. Specifically, we first extract the
posterior probability from the L1 speech recognition model to
quantify the phoneme accent intensity for accented speech, then
design a FastSpeech2 based TTS model, named Ai-TTS, to
take the accent intensity expression into account during speech
generation. Experiments show that our method outperforms
the baseline model in terms of accent rendering and intensity
control.
Index Terms: Accented, Text-to-Speech (TTS), Intensity, Ex-
plicit Control

1. Introduction
Accented text-to-speech (TTS) synthesis aims to synthesize
speech with foreign accent instead of native speech [1]. Note
that accent is characterized by a distinctive manner of expres-
sion that is influenced by the mother tongue, social group
of speakers, or spoken in a particular region [2]. Therefore,
the wide adoption of speech applications, such as chatbot and
movie dubbing, calls for the study of accented TTS synthesis
[3]. Another important practical application is in the design
of tools aimed at improving L2 phonological acquisition in
language learners.

For accented TTS, some attempts tried to model the accent
expression through model interpolation [4–6], variance infor-
mation prediction [4–6], specific quinphone linguistic features
[7, 8] and tone/stress embedding [8, 9], etc. However, the
accent as perceived in human speech is subtle and at a fine
level [10]. How to control the intensity of an accent is still
an open challenge [11]. Wutiwiwatchai et al. [12] proposed an
accent level adjustment mechanism for bilingual TTS synthesis,
where the accent level is adjusted by means of interpolation
between HMMs of native phones and HMMs of corresponding
foreign phones. This method provides an effective fine-grained
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accent intensity control scheme, while it cannot be used in
current deep learning TTS models [13–16], such as Tacotron
[9, 17] and FastSpeech [18, 19] based architectures. In a recent
deep learning based multilingual TTS study [1], the authors
employed the domain adversarial training [20] to disentangle
the accent identity from the speaker identity where the accent
level can be controlled by varying the domain adversarial
weight [1]. Such an adversarial weight method controls the
utterance-level accent intensity of speech by using the model
hyper-parameter. There is no direct and measurable correlation
between the controlling factor and the natural accent intensity.
The question is how to characterize the fine-grained phoneme-
level accent intensity meaningfully, and employ the intensity
to control the synthesis of L2 speech for state-of-the-art TTS
models, which is the focus of this paper.

Fortunately, we found that there is a great deal of work
in the field of Computer-aided pronunciation training (CAPT)
[21, 22] to measure the pronunciation of non-native learner.
Most of these works assumed that acoustic properties in the
learner’s pronunciation are similar to a native English speaker’s
acoustics when their pronunciation similarity is high and vice-
versa. Considering this, for each phoneme’s in a learner’s
utterance, a representative score based on posterior probability
of the phoneme models given uttered phoneme speech acous-
tics, called as Goodness of Pronunciation (GoP) [23, 24] was
proposed and achieved remarkable performance.

Inspired by this, we propose a FastSpeech2 based accented
TTS model, named Ai-TTS, which synthesizes L2 speech by
conditioning phoneme-wise accent intensity information. To
quantify the fine-grained accent intensity, we utilize a pretrained
L1 speech recognition model to calculate the GoP score as the
phoneme intensity score for each L2 phoneme. During infer-
ence, we can control accent expression easily by conditioning
intensity labels manually. The experimental results show that
our system successfully achieves better accent expressiveness
and controllability than the baseline system.

The significant contributions of this work include, 1) We
introduce a novel FastSpeech2 based accented TTS synthesis
paradigm, named Ai-TTS, that explicitly controls the accent
intensity in output speech; 2) We successfully design and
implement a fine-grained accent intensity quantization method
with accent speech recognition model; 3) We show that the
proposed Ai-TTS framework outperforms the baseline models
and generates high-quality L2-accented speech.

2. Ai-TTS: Methodology
2.1. Model Architecture

We propose a neural architecture, termed as Ai-TTS, as shown
in Fig.1 (a) that consists of an accent intensity modeling
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Figure 1: The diagrams for the proposed Ai-TTS system. (a) shows the overall model architecture; (b) illustrates the detailed structure
of the accent renderer, which includes the accent intensity encoder and the variance adaptor; (c) demonstrates the workflow of the
accent intensity modeling.

module, a phoneme encoder, an accent renderer, and a decoder.
The phoneme encoder and decoder are implemented on the
basis of FastSpeech2 [18]. The novel accent intensity modeling
module aims to learn the phoneme-level accent intensity score
for the input L2 speech. Note that the accent intensity modeling
module can be treated as the preprocessing operation to label
the phoneme intensity score for L2 speech dataset. The
phoneme encoder encodes the input phoneme sequence into
phoneme embedding. The accent renderer seeks to modulate
the input phoneme embeddings with the learned phoneme
intensity score and various variance information (including
pitch, energy and duration) towards the target accent. Note
that the input phoneme intensity score enables all variance
information to be affected by the fine-grained accent intensity.
The decoder converts the modulated phoneme embeddings into
a mel-spectrum sequence. Finally, the universal HiFi-GAN
vocoder [25] is used to synthesize high-quality L2 speech.

2.2. Accent Renderer

The traditional variance adaptor in [18] just adds different
variance information such as duration, pitch and energy into
the phoneme embeddings, that lacks an accent controlling
mechanism. We note that our accent renderer augments the
phoneme embeddings with the phoneme accent intensity scalar.
The accent renderer provides phoneme-level accent information
according to fine-grained accent intensity. As shown in Fig.1
(b), the accent renderer consists of 1) an accent intensity
encoder, 2) a phoneme pitch predictor, 3) a phoneme energy
predictor, and 4) a phoneme duration predictor.

Assume that phoneme embedding Hph is the phoneme
encoder output and the learned phoneme intensity score is i.
We implement the accent intensity encoder with a linear layer
to transform a real-valued accent intensity score i to an intensity
embedding vector, Hi. Afterwards, the phoneme-wise intensity
embedding Hi is concatenated to the phoneme embedding Hph

to form the accented phoneme embedding H′
ph. The phoneme

pitch and energy predictors take H′
ph as input and are expected

to output more accurate pitch and energy information, that are
p and e respectively, for L2 speech. We sum the accented
phoneme, pitch and energy embeddings to form an augmented
accented phoneme embedding H′′

ph = H′
ph + p+ e. A length

regulator (LR) is used to transform the H′′
ph to frame-level

embeddings Hfm based on the phoneme duration D predicted
by duration predictor.

In a nutshell, the accent renderer learns to project the de-
sired accent and its intensity into the input phoneme embedding
Hph. The phoneme-level real-value score i of accent intensity,
ranging from 0 to 1, is generated by a novel accent intensity
modeling module, which will be described in Sec. 2.3.

2.3. Accent Intensity Modeling

As mentioned in Sec.1, inspired by the CAPT field, we first
pretrain the native speech recognition network with the L1
acoustic model, and then quantify the accent intensity for the
phoneme sequence of L2 speech by comparing it with the
posterior probability between L2 and L1 phonemes. As shown
in Fig.1(c), the accent intensity modeling is conducted in two
stages: 1) Stage1: L1 acoustic modeling stage, and 2) Stage2:
accent intensity quantization stage.

2.3.1. Stage1: L1 Acoustic Modeling

In this work, we employ the Time-Delay Neural Network
(TDNN) based acoustic model [26] , for modelling long term
temporal dependencies from short-term acoustic features, with
the L1 speech dataset. The TDNN acoustic model consists of 6
TDNN layers and softmax layer. The Mel Frequency Cepstral
Coefficients (MFCC) and i-vector [27] features are extracted as
the TDNN input, that are acoustic observations sequences o as
well. The initial TDNN layers learn the narrow contexts and
the deeper TDNN layers process the hidden activations from a
wider temporal context. As the output, the last softmax layer of
TDNN acoustic model can directly output the posterior P(·) of
each phoneme of input speech. More details are referred to [28].

After TDNN pretraining, the trained acoustic model takes
the phoneme segments of the L2 speech as input to calculate the
GoP score, that regarded as the accent intensity score for each
phoneme. We will describe it next.

2.3.2. Stage2: Accent Intensity Quantization

To quantify the accent intensity score for all phonemes of L2
speech, the trained TDNN acoustic model takes the L2 speech,
instead of L1 speech, as input to extract the posterior for each
phoneme p. Afterwards, following [29], the Log Phoneme
Posterior (LPP) ratio between the canonical phoneme p and the
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one phoneme q with the highest score is used to approximate
the GoP score:

GOP(p) = log
LPP(p)

maxq∈Q LPP(q)
(1)

LPP(p) = logP (p | o; ts, te) (2)

where Q is the whole phoneme set. o is the input acoustic
observations. ts and te are the start and end frame indexes,
obtained by forced-alignment, respectively. P(p) means the
prior of phoneme p. Note that the straight way to approximate
the LPP(p) of phoneme segment p is by averaging the frame
based posterior P(st|o) [29]:

LPP(p) ≈ 1

te − ts + 1

te∑

t=ts

logP (p | ot)

P (p | ot) =
∑

s∈p

P (s | ot)
(3)

where st is the senone class label [30] of the frame t gener-
ated by force alignment with the given canonical phoneme p.
s|s ∈ p is the states belonging to those triphones whose current
phone is p.

At last, we follow [31] and normalize the GoP score to
[0,1], with 1 as the strongest intensity, as the final accent
intensity score i for accent rendering during TTS.

2.4. Run-time Inference

During inference, the Ai-TTS takes the phoneme sequence
and synthesizes the controllable L2 speech by conditioning the
custom phoneme intensity score manually to achieve explicit
intensity control for accented TTS. When all phonemes share a
score, it can be viewed as utterance-level control.

3. Experiments and Results
3.1. Datasets

L1 Speech Dataset: LibriSpeech corpus [32] is derived from
audiobooks that include reading-style speech recorded by 2238
native L1 English speakers, which contains 960 hours of data
in the train set. All audios are sampled at 16 kHz and coded in
16 bits. We adopt the “train 960 cleaned” subset to conduct the
TDNN acoustic modeling.

L2 Speech Dataset: We train Ai-TTS on the publicly avail-
able L2-ARCTIC corpus [33], which includes about 26 hours
recordings of accented English from 24 non-native speakers,
whose are native in Hindi, Korean, Mandarin, Spanish, Arabic
and Vietnamese. Two male and two female speakers contributed
in each language. In L2-ARCTIC, scripts and their phoneme-
level alignment annotations are provided. The speech data
is sampled at 44.10 kHz and coded in 16 bits. For Ai-TTS
training, we select the subset of Mandarin accent and partition
the speech data into training, validation, and test sets at a ratio
of 8:1:1.

3.2. Experimental Setup

The phoneme encoder and decoder of Ai-TTS use 6 Feed-
Forward Transformer (FFT) blocks. The dimension of the
phoneme embedding Hph is 256. The phoneme sequence
is generated by the grapheme to phoneme (G2P) conversion

Figure 2: Confusion matrices between perceived and intended
accent intensity categories of synthesized speech. (a) Ai-TTS;
b) DAW. The X-axis and Y-axis of the figures represent the
perceived and intended categories, namely slight, average, and
strong.

toolkit 1. The decoder generates an 80-channel mel-spectrum,
which is extracted with 12.5ms frame shift and 50ms frame
length, as output. We downsampled all speech files to 22.05
kHz and trimmed leading and trailing silence. In accent
renderer, the accent intensity encoder consists of a linear
layer, which encodes the accent intensity score i into a 256
dimensional Hi.

We use the Adam optimizer [34] with β1 = 0.9, β2 = 0.98
and follow the same learning rate schedule in [35]. All models
are trained with 900k steps to ensure complete convergence.
The codes are written in Python 3.6 using the Pytorch library
1.7.0. The GPU type is NVIDIA Tesla P100 with 24GB GPU
memory. We employ a pretrained universal HiFI-GAN [25]
vocoder for waveform generation.

For TDNN acoustic modeling, we extract the 100 dimen-
sional i-vector and 400 dimensional MFCC features as the
TDNN input 2. The acoustic frame context configuration of
TDNN are [-1,0,1], [-1,0,1], [-3,0,3], [-3,0,3], [-3,0,3], [-6,-3,0]
in order. We follow the Kaldi script 3 to train TDNN with 128
batch size. The word error rate of the TDNN acoustic model
achieved 5.21 % for various test sets of LibriSpeech on average,
which is encouraging. The following subsection will investigate
the explicit controllability performance for accented TTS.

3.3. Controllability Evaluation on Utterance-level

In this section, we conduct subjective experiments to val-
idate our Ai-TTS by comparing Ai-TTS with the domain
adversarial weight (DAW) control mechanism [1]. Different
from the phoneme-level intensity control method of Ai-TTS,
DAW uses adversarial weights to control the utterance-level
accent intensity. However, if we use one value to define all
the phoneme intensity scores in an utterance, it can simulate
utterance-level intensity control. To this end, to verify the
better interpretability of our explicit intensity control method,
we compare the utterance-level intensity control effects of Ai-
TTS and DAW for fair comparison.

Note that DAW is an utterance-level control method, we
set the intensity of all phonemes in Ai-TTS to same value to
achieve utterance-level control. We first conduct an accent
intensity classification experiment. Specifically, for DAW, we
follow [1] and set the adversarial weight from 0 to 0.1. We
consider the weight value from 0 to 0.03 as ‘slight’, 0.04 to
0.06 as ‘average’ and 0.07 to 0.1 as ‘strong’ in three categories.

1https://github.com/Kyubyong/g2p
2https://github.com/kaldi-asr/kaldi/blob/

master/egs/librispeech/s5/run.sh
3https://github.com/kaldi-asr/kaldi/blob/

master/egs/librispeech/s5/local/nnet3/tuning/
run_tdnn_1b.sh
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Unconsciously, our yells and exclamations yielded to this rhythm

Figure 3: Spectrogram, F0 contour and energy of an utterance with specific phoneme-level intensity score. While boxes indicates the
acoustic performance with higher accent intensity. It is observed that Ai-TTS provides an effective explicit accent intensity control
mechanism.
Table 1: The comparison of the accent expression for different systems, including expressiveness MOS score, standard deviation (σ),
skewness (γ), kurtosis (K) and average dynamic time warping (DTW) distances (ϱ) for pitch.

System MOS (↑) σ (↑) γ (↓) K (↓) ϱ (↓)
Ground Truth 4.43 ± 0.025 48.5 0.586 0.935 NA
FastSpeech2 [1] 3.86 ± 0.031 41.3 0.632 0.992 19.22
Ai-TTS (i=1) (proposed) 4.01 ± 0.022 47.2 0.561 0.944 18.56

For Ai-TTS, we consider the intensity scores from 0 to 0.3 as
‘slight’, 0.4 to 0.6 as ‘average’ and 0.7 to 1 as ‘strong’. We
select 100 utterances from the test set, resulting in 100 samples
for both systems. Accordingly, all listeners are instructed to
rate the accent intensity category, that are ‘slight’, ‘average’ or
‘strong’, for each sample. A listener can listen to the samples
multiple times when needed.

Fig. 2 reports the intensity confusion matrices. We can
find that the Ai-TTS system shows a higher correlation between
the perceived and intended accent intensity categories, with a
correlation of over 80%, that is considered a competitive result
against other intensity-controlled studies [1]. Furthermore,
the Ai-TTS system clearly outperforms the contestant. The
experiment results confirm the superiority of the proposed
explicit accent intensity control mechanism.

3.4. Controllability Evaluation on Phoneme-level

We further evaluate the intensity-controlled speech at phoneme
level. Note that F0 (or pitch) and energy are related to accent
expression [1]. Fig. 3 shows an example of spectrogram,
F0 contour and energy of an utterance “Unconsciously, our
yells and exclamations yielded to this rhythm.”. Due to space
limitations, the phoneme sequence “AH2 N K AA1 N SH AH0
S L IY0 sp AW1 ER0 Y EH1 L Z AE1 N D sp EH2 K S K
L AH0 M EY1 SH AH0 N Z sp Y IY1 L D IH0 D T UW1
DH IH1 S R IH1 DH AH0 M” is omitted. We assign the
intensity score of phonemes of words “Unconsciously”, “yells”
and “exclamations” as 0.9 while those of other phonemes are
0.1. The white boxes in Fig. 3 show that the phonemes with
higher accent intensity perform with higher F0 and energy.
It indicates that fine-grained accent intensity changes can be
easily detected. The Ai-TTS system provides an effective
explicit accent intensity control mechanism. We suggest the
readers to access our online website 4 for more demos.

4Speech samples: https://ttslr.github.io/Ai-TTS/

3.5. Accent Expression

To understand how the accent renderer performs, we randomly
select 100 utterances from the test set as the test samples
and report the 5-scale Mean Opinion Score (MOS) for three
systems, including Ground Truth L2 speech, synthesized
L2 speech by FastSpeech2 [18] and our Ai-TTS. For fair
comparison, we set i to 5 for all input utterances of Ai-TTS.
We invite 20 listeners and report the subjective MOS results in
the second column of Table 1. It is observed that our Ai-TTS
achieves a MOS of 4.01 ± 0.022, that is significantly higher
than FastSpeech2 baseline and very close to the Ground Truth.
For objective evaluation, we follow [18] and report the moments
(including standard deviation (σ), skewness (γ) and kurtosis
(K)), and average dynamic time warping (DTW) [36] (ϱ) of the
pitch distribution between the synthesized L2-accented speech
and the ground truth reference in the third to sixth columns
of Table 1. It can be seen that the Ai-TTS system is reported
with all values that are closer to those of the Ground Truth than
FastSpeech2. The subjective and objective evaluations suggest
that our Ai-TTS with accent renderer achieves more expressive
L2 speech in terms of accent expression.

4. Conclusion

We have studied a novel TTS model, named Ai-TTS, to control
the L2 accent and its intensity explicitly. We have conducted a
series of experiments on utterance-and phoneme-level intensity
control to validate the effectiveness of the Ai-TTS model. The
proposed GoP based intensity score outperforms the adversarial
weight strategy in terms of interpretability and controllability.
This work marks an important step towards controllable ren-
dering of accented TTS synthesis. In future work, we plan to
further improve the intensity quantification method.
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