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Abstract
We address speaker-aware anti-spoofing, where prior knowl-
edge of the target speaker is incorporated into a voice spoof-
ing countermeasure (CM). In contrast to the frequently used
speaker-independent solutions, we train the CM in a speaker-
conditioned way. As a proof of concept, we consider speaker-
aware extension to the state-of-the-art AASIST (audio anti-
spoofing using integrated spectro-temporal graph attention net-
works) model. To this end, we consider two alternative strate-
gies to incorporate target speaker information at the frame and
utterance levels, respectively. The experimental results on a
custom protocol based on ASVspoof 2019 dataset indicate the
efficiency of the speaker information via enrollment: we obtain
maximum relative improvements of 25.1% and 11.6% in equal
error rate (EER) and minimum tandem detection cost function
(t-DCF) over a speaker-independent baseline, respectively.
Index Terms: Speaker Verification, Speaker-Aware Anti-
Spoofing, ASVspoof, Deepfake, Spoofing Countermeasures.

1. Introduction
Thanks to recent advances in neural vocoding of raw speech
waveforms [1], modern text-to-speech (TTS) allows the flexi-
ble generation of artificial speech that sounds like natural hu-
man speech [2]–[4]. Combined with parallel developments in
speaker information extraction through neural speaker embed-
dings [5], [6] to condition waveform generation [7], [8], modern
TTS allows, in principle, to “put words into anyone’s mouth” in
the voice of a targeted person.

Despite numerous useful applications, such flexibility
raises obvious concerns. First, in the context of biometric
authentication, the possibility for an adversary (attacker) to
spoof automatic speaker verification (ASV) by miscuing one-
self as another individual (target) is well known [9]. Second,
the potential negative implications of deepfakes — a combina-
tion of ‘deep learning’ and ‘fake’ based on adversarial machine
learning [10]— has recently been called to the attention of re-
searchers [11] and the general public [12]. We have already
seen alerting examples [13], even if speech-related deepfakes
have received less attention compared to image- and video-
based deepfakes. Deepfakes used for malicious purposes may
damage not only the reputation of the targeted individuals but
undermine general trust in audio-visual media and biometric
technology. To retain the trust, novel protective means are re-
quired.

On the positive side, the importance of being able to dif-
ferentiate “real” inputs from “fake” inputs was proactively rec-
ognized early on — way before the concepts of “adversarial
machine learning”, or “deepfakes” were introduced. In par-
ticular, the biometrics research community has studied various

anti-spoofing methods to protect biometric systems for more
than two decades [14]. Presentation attack detection (PAD)
systems [15], also known as countermeasures (CMs), refer to
methods aimed at detecting spoofed inputs.

In this study, “CM” refers to a classifier that takes speech
input(s) and produces a binary bonafide/spoof prediction. Since
2015, the ASVspoof challenge series [16] has spearheaded
benchmarking of speech CMs using common data and perfor-
mance metrics [17]. Despite its title, the ASVspoof challenges
focus on standalone, speaker-independent CMs that can be in-
tegrated with ASV systems or other applications. Thanks to the
common data provided by the ASVspoof challenge and other
similar recent initiatives [18], [19], several standalone speech
CMs have been developed ranging from early statistical meth-
ods [20], [21] to recent deep architectures [22]–[24].

Unfortunately, most existing CMs are far from perfect,
particularly when faced with the unknown — be it unseen
vocoders, TTS systems, data domains, or codecs [25]. The
unconstrained form of the standalone speaker-independent CM
task, combined with an artificial speech that is already difficult
to differentiate from a real speech by listeners, makes CM gen-
eralization beyond training data challenging. The quest for fully
general, speaker-independent CM implies that one has to com-
pensate for the potential confounding effects due to speaker,
content, and channel variation, with limited prior knowledge.

Even if not addressed in challenges like ASVspoof, in many
applications we do have prior knowledge of the target person
that could readily be utilized by the CM: spoofing attacks are
typically targeted against a particular individual — the same
individual whose identity we seek to verify and who the ASV
system already ‘knows’ based on enrollment data collected ear-
lier. Concerning deepfakes targeted against public figures such
as politicians and news anchors, it seems equally safe to assume
that we know who the intended target in a potential deepfake
sample is. For these reasons, it seems then very reasonable to
inform CM at the test time of the identity of the hypothesized
speaker based on the enrollment sample. To this end, we present
an initial investigation on the use of target speaker information
for anti-spoofing that we dub speaker-aware anti-spoofing.

Our study is not the first one to explore this general idea.
The two prior studies [26], [27] that the authors are aware of
focus either on replay attack detection with Gaussian mixture
model (GMM) backend [26] or on improving the back-end of
the ASV system [27]. Our work differs substantially from both
studies in terms of CM solutions (statistical model [26] vs. deep
learning), the type of fake data (replay attacks [26] vs. synthetic
media), the experimental setup, and the evaluation in terms of
protocol design and metrics. The main novelty of our work
is to propose a precise formulation of the speaker-aware anti-
spoofing problem. We also compare different alternative ways
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Figure 1: Illustration of speaker information integration via the enrollment vectors. Blue lines and red lines correspond to different
approaches which are not applied simultaneously. Dash lines represent the auxiliary attachment operation. Best viewed in color.

of integrating target speaker information into the state-of-the-
art AASIST model [23]. To be specific, this information is pre-
sented using deep speaker embedding and integrated into differ-
ent parts of AASIST as illustrated in Fig. 1 and detailed in the
next section.

Figure 2: Illustration of transformation of speaker enrollment
vector into channel-wise or spectral-wise attachable compo-
nents. Fenr in Fig. 1 can be either Fchan or Fspec. The transfor-
mation matrix Ptrans can be respectively either Pchan or Pspec.
Rep(.) denotes repeating operation on the other two dimen-
sions. Best viewed in color.

2. Speaker-Aware Training of
Countermeasure

2.1. Problem Definition

We first define the problem of speaker-aware anti-spoofing,
as a binary classification task of discriminating between
bonafide and spoofed speech conditioned on the enrolled
speaker. More specifically, it is a conditional hypothesis test
defined as follows:
• H0: Test sample is bonafide and corresponds to the target

speaker.
• H1: Test sample is spoofed and corresponds to the target

speaker.
In practice, we address this task by incorporating additional
bonafide utterances of the target speaker, detailed next. It is
worth noticing that the two hypotheses are conditioned on the
target speaker, which make them different from the conven-
tional definition of anti-spoofing.

2.2. Speaker-aware anti-spoofing

The proposed speaker-aware CM is illustrated in Fig. 1. The
speaker information can be represented in various ways, from
raw audio to well-established deep speaker embeddings. In this
study, we focus on the latter. We feed the enrollment audio data
into a pre-trained ASV model (here, ECAPA-TDNN [28]). For
each enrollment speaker, we extract speaker embeddings corre-
spondingly and average them to get one enrollment embedding:

φenrol =
1
N

∑N
i=1 φi, where N is the number of utterance avail-

able for the enrollment.
We consider the recent AASIST [29] for this study. It con-

sists of a speech encoder based on RawNet2 [30]; two hetero-
geneous graph attention layers operated respectively on spectral
and temporal axes; and a graph pooling layer. The pooling layer
is followed by node stacking and a fully connected (FC) layer
for binary decision-making. As illustrated by the blue lines in
Fig. 1, we propose to integrate the enrollment embedding φenrol

into the training by regarding it as auxiliary conditioning infor-
mation. Methods proposed along with their short-handed forms
are presented in the followings.

Integration at the encoder output: Firstly we focus on
the output of the encoder, which is a 3-dimensional feature
map with channel, spectral, and temporal axes. Let us denote
the shape of the map as (dc, ds, dt). Inspired by earlier works
on channel-wise extension [31]–[33] and speaker adaptation on
spectral features [34], we extend our embedding vector Fenr at
either channel-level or spectral-level as illustrated in Fig. 2. The
Fenr in Fig. 1 can thus be either Fchan or Fspec. Fchan is of shape
(dembed, ds, dt) and Fchan is of shape (dc, dembed, dt). Here, dembed

is the dimension of the enrollment vector. Such two methods on
attaching at channel or spectral axis are denoted as enc-chan
and enc-spec, respectively.

Integration at the encoder output with dimensionality
reduction: Since the dimensionalities between the embedding
vector and the original feature map are respectively different
(dembed vs. ds or dt), one of them may have potentially more im-
pact to model predictions. Therefore, alternatively, we consider
including a transformation matrix Ptrans for dimensionality re-
duction as shown in Fig. 1. Ptrans can be either Pchan or Pspec,
accordingly for channel-level and spectral-level attachment, as
illustrated in Fig. 2. In the case where the enrollment vector is
firstly reduced to dc or ds, Ptrans is initialized with normal distri-
bution and jointly optimized along with other learnable compo-
nents in AASIST, and with shape of (dembed, dc) (for Pchan) or
(dembed, ds) (Pspec) respectively; in the case where dimensional-
ity reduction is not carried out, Ptrans is an identity matrix with
shape of (dembed, dembed). We denote the resulting feature maps
by adding the suffix -reduced, so the corresponding methods are
enc-chan-reduced and enc-spec-reduced, respectively.

Integration at the FC layer input: Up to this point, we
have described the use of enrollment embedding at the early lay-
ers of AASIST. As an alternative strategy, we also consider in-
tegration before the fully-connected layer, as illustrated in Fig.
1. The input of the FC layer before the decision-making is a
utterance-level 160-dimensional vector, denoted as φtest. It has
been extracted in earlier works [35] for joint optimization with
ASV systems. Here we simply append φenrol to φtest, with the
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input dimension of the FC layer then being dembed + 160. We
denote this mean of attachment as utterance when presenting
the results in Section 4.

(a) Speaker-independent setup

(b) Main setup

(c) Ablation setup

Figure 3: The conceptual illustration of the setups for (a)
conventional speaker-independent anti-spoofing, (b) speaker-
aware anti-spoofing (Main), (c) ablation study setup (Ablation).
φtar represents φenrol from the same speaker of the input au-
dio Xtest. φnontar represents φenrol from a different speaker from
Xtest. Whereas Main complies with the assumption of known
target speaker, Ablation is used to assess the impact of the vio-
lation of this assumption on CM performance.

Table 1: Number of dev/eval trials available for the full CM and
customized protocols.

Setup dev eval
Original [36] 24844 71237
Main (Ours) 23780 69252

3. Experimental Setup
Data. We conduct experiments based on ASVspoof 2019 LA
[36], which covers 19 types of spoofing attacks. The CM train-
ing data consists of 20 speakers (9 male, 11 female) and covers 6
attacks (A01-A06), along with the bonafide condition. The CM
evaluation data contains other 13 types of attacks (A07-A19).
When training the CM model, for each of the 20 speakers, we
generate φenrol by averaging over his/her speaker embeddings
over N randomly selected utterances from the bonafide condi-
tion. We set N = 11 for female, and N = 19 for male.

Protocol. The design logic of the protocol is shown in
Fig. 3b, with comparison to the regular anti-spoofing setup
shown in Fig. 3a. We recall our assumption that the test ut-
terance originates from a known target speaker, and the task is
to determine whether or not the sample is bonafide or spoofed
utterance. Therefore, for each test utterance, its associated
speaker embedding for enrollment φenrol is from the same tar-
get speaker. In this case, our evaluation protocol is based on the
original ASVspoof 2019 CM protocol (“Original” in Table 1),
with the bonafide speech trials without the corresponding tar-
get speaker in the dataset being removed. We use the speaker
information available in the ASV protocol files in the original
metadata. The protocol statistics are presented in Table 1. We
refer to this protocol setup as Main, which differs from the Ab-
lation setup described in Section 4.2.

Table 2: Results in terms of pooled EER and minimum tDCF.
Main Ablation

Method EER(%) tDCF EER(%) tDCF
(Baseline) 1.51 0.043 1.51 0.043
enc-chan 1.48 0.049 1.80 0.061

enc-chan-reduced 2.27 0.077 2.20 0.073
enc-spec 1.13 0.038 1.47 0.049

enc-spec-reduced 1.65 0.055 1.88 0.061
utterance 1.89 0.059 1.78 0.052

Model. For the AASIST model, we adopt the solution from
the open-sourced repository as the speaker-independent base-
line1. Model training and hyperparameter setups followed the
ones described in [29], except for the batch size that was re-
duced from 24 down to 12 due to limited computational re-
sources (via a single NVIDIA GeForce GTX 2080Ti). The orig-
inal shape of the feature map was (dc, ds, dt) = (64, 23, 29),
as shown in Fig. 1. We used the open-sourced pre-trained
ECAPA-TDNN2 [28] as the pre-trained ASV model, to extract
the speaker embedding with dembed = 192. Each speaker em-
bedding was extracted from the first fully-connected layer after
the pooling layer for each input sentence.

Evaluation. We report equal error rate (EER) and mini-
mum tandem detection cost function (tDCF) [17]. Since com-
pared to minimum tDCF, EER reflects more on the sole CM
performance [17], [29], we present our analysis on results pri-
marily on EERs, including the per-attack-type analysis.

4. Results and Analysis
4.1. Results

Results in terms of pooled EER and tDCF are presented in
Table 2. While channel-wise speaker integration without di-
mensionality reduction only marginally improves the EER, the
spectral-wise integration works nicely by achieving the lowest
numbers in both metrics, outperforming the baseline by rela-
tively 25.1% and 11.6% in terms of EER and minimum tDCF,
respectively. This indicates the efficiency of integrating the tar-
get speaker integration method on the spectral feature map. The
relatively under-performed channel-wise integration, in turn,
might be explained by noting the original audio is single chan-
nel and contain a rather low level of noise. Applying dimension-
ality reduction degrades the CM performance for both methods.
Attaching the enrollment vector before the FC layer with the
bottleneck embedding does not lead to improvements.

A detailed breakdown of the results per attack is shown
in Table 3 for the baseline and the best speaker-aware anti-
spoofing approach (per protocol). In addition to the CM results
shown in the first four lines, the table also displays the EERs of
the ASV system on the full CM protocol. These numbers serve
to indicate the effectiveness of each attack in spoofing the ASV
system (but should not be compared with the CM results). Re-
flected by the ASV EERs, some attacks do not spoof the ASV
model well, such as A09, A17, and A18, which means that those
algorithms do not model the speaker information well.

Moving back to the CM performances, there are five
types of attacks (A08, A09, A16, A17, A18) where the best-
performed proposed method outperforms (or reaches similar
performance with) the baseline under both protocols. The ASV
EER for four of them is relatively low (lower than 20%) except

1https://github.com/clovaai/aasist
2https://github.com/TaoRuijie/ECAPA-TDNN/
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Table 3: Results in terms of per-attack-type EER(%) for baselines and best-performed systems. Spoofing attacks in bold font indicate
the acquisition of speaker information during the development, according to [36]. The ASV EER is returned by the same pre-trained
ECAPA-TDNN model as used in this study, as described in [35].

Method A07 A08 A09 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19

Main (Baseline) 0.75 0.19 0.02 0.88 0.37 0.72 0.14 0.15 0.47 0.73 2.15 4.80 0.78
enc-spec 1.18 0.07 0.00 1.38 0.41 0.98 0.22 0.28 0.98 0.65 1.28 2.70 0.34

Ablation enc-spec 1.57 0.08 0.00 1.95 0.47 1.26 0.28 0.35 1.30 0.71 1.79 3.13 0.30
ASV EER [35] 32.66 18.80 2.20 50.61 47.08 39.56 11.62 35.39 36.54 60.71 1.85 2.38 4.77

for A16, which indicates that the proposed speaker information
integration method further exploits the weakness of the spoof-
ing algorithm by not being able to encode the target speakers
well. Improvements can also be observed on A16, which corre-
sponds to the highest ASV EER among all spoofing algorithms.
This may exploit the compensation ability of the proposed algo-
rithms on strong attacks that models speaker information well.
Future work may further exploit the relationship between the
speaker information modeling ability of the spoofing algorithms
and its compensation from the CM via such integration.

4.2. Ablation study: Mis-specified speaker identity

The evaluation setup and results described above are based on
the assumption that the input audio is target speaker. A natural
question that arises is what might happen if this assumption is
violated? – i.e. how robust the CM is to modeling misspecifica-
tion in terms of mismatched speaker identities across the enroll-
ment and test utterances. To this end, in this ablation study, we
assume that the bonafide input audio is not from its correspond-
ing speaker. In this case, we retain the exact test utterances as
in the main protocol but replace the corresponding enrollment
utterance with a randomly selected enrollment utterance from
another randomly selected speaker. This ablation setup is illus-
trated in Fig. 3c.

The overall results for the proposed methods for this setup
are shown in Table 2. For most proposed methods, compared
to the Main setup, the results in both metrics are degraded, but
not by a large margin. The EER of the best-performed enc-
spec degrades by relatively 25.1%, but still retains the accuracy
of the speaker-independent baseline, even in the severe model-
ing mis-specification / strong violation of modeling assumption.
For enc-chan-reduced and utterance, the results remain at about
same level. The per-attack results for enc-spec under this setup
is shown in Table 3. For the six types of attacks where im-
provements are observed under the Main setup, enc-spec holds
its superiority over the baseline, although with marginal perfor-
mance degradation from Main except on A09 and A19. While
such degradation indicates the usefulness of target speaker in-
formation compared to the one from another speaker, the poten-
tial of such non-target speaker information still deserves further
investigation and extension onto other scenarios.

4.3. Ablation study: Additional bonafide training data

An enrollment vector is not only a speaker representation but
also an additional container of bonafide information. Both
speaker and bonafide information can be useful as prior con-
ditions for training CM systems. Therefore, we consider an ex-
periment on the effect of additional bonafide training data.

We implement the addition under the full CM protocol by
pooling additional speech data from various datasets. We con-
sider VoxCeleb [37] and LibriSpeech [38] corpora. For each
dataset, we vary the number of utterances for CM training. The

None 2.5k 5k 10k 25k 50k
Amount of additional bonafide training data (num. utterances)

1.0

1.5

2.0

2.5

CM
 E

ER
(%

)

Baseline(~25k)
Baseline(~25k)+VoxCeleb1
Baseline(~25k)+LibriSpeech
Proposed(enc spec)

0 0.1 0.2 0.4 1 2
Proportion of additional data vs. original data

CM performance w. additional bonafide data

Figure 4: The relationship between the additional data from dif-
ferent common speech processing datasets and the CM perfor-
mance under Main. The green dashed line indicates the base-
line performance and the pink one indicates the best-performed
system. Best viewed in color.

results are shown in Fig. 4, along with the baseline and the best-
performing speaker-aware CM. The figure reveals two interest-
ing patterns. First, the larger amount of additional sole bonafide
data from either VoxCeleb1 or LibriSpeech improves perfor-
mance. Second, the baseline performance is improved with 25k
additional utterances, where the amount of data added is almost
equal to the total amount of CM training data (25380 utterances
[36]). However, adding more data does not necessarily lead to
better performance. Relating to the results above, this suggests
a more significant benefit provided by additional speaker infor-
mation, but this might also since the ASVspoof dataset is origi-
nated from VCTK3, which is a very clean dataset recorded using
the anechoic room. Future work may investigate this issue.

5. Conclusion
We have investigated the feasibility of speaker-aware anti-
spoofing using state-of-the-art AASIST countermeasure for
synthetic spoofing attack detection. Our findings indicate that
integration of target speaker enrollment embedding as auxiliary
information leads to up to 25.1% relative improvement in anti-
spoofing EER. Additional experiments on the effect of alter-
native speaker information and augmenting the bonafide train-
ing using auxiliary corpora have suggested that the proposed
speaker-aware training strategy can be more effective. Confirm-
ing similar findings done in the two earlier studies using com-
pletely different classifiers and datasets [26], [27], this study
adds evidence to the positive impact of target speaker prior in-
formation. Future work may focus on the Siamese network to
encode speaker information and make it available during the
training of the CM module, along with more advanced cohort
models to encode the speaker information.

3https://datashare.is.ed.ac.uk/handle/10283/
2651
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