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Abstract
Self-supervised speech representations are known to encode both
speaker and phonetic information, but how they are distributed
in the high-dimensional space remains largely unexplored. We
hypothesize that they are encoded in orthogonal subspaces, a
property that lends itself to simple disentanglement. Applying
principal component analysis to representations of two predictive
coding models, we identify two subspaces that capture speaker
and phonetic variances, and confirm that they are nearly or-
thogonal. Based on this property, we propose a new speaker
normalization method which collapses the subspace that encodes
speaker information, without requiring transcriptions. Probing
experiments show that our method effectively eliminates speaker
information and outperforms a previous baseline in phone dis-
crimination tasks. Moreover, the approach generalizes and can
be used to remove information of unseen speakers.
Index Terms: self-supervised learning, unsupervised speech
processing, speaker normalization

1. Introduction
Self-supervised learning (SSL) models of speech are trained on
large quantities of unlabeled data to learn useful representations
of speech audio. Empirically, SSL pre-training has been shown
to improve performance on downstream tasks while reducing
reliance on annotated data [1, 2]. Researchers have also started
to evaluate SSL models as computational models for phonetic
acquisition and speech perception in humans [3, 4].

It is natural to ask what makes these learned representations
so effective. So far, most work in the area has done so by an-
alyzing what type of information is encoded, finding that SSL
models encode information ranging from acoustic [5] and con-
textual [6] cues, to gender [7] and speaker identity [8]. Some
researchers have also analyzed where in these models (at which
layer) such information is encoded [9]. In this paper, we ask a
question that has received little attention so far, namely how dif-
ferent types of information are distributed across the dimensions
of the representation space. Analysis targeted at this question
can potentially improve the interpretability of the learned repre-
sentations, inspire new methods for disentangling linguistic and
non-linguistic information, and shed light on properties of the
representation space that can be compared against neural repre-
sentations or behaviour data of humans to evaluate the scientific
value of the model. We know of no previous work analyzing this
question in detail, although some studies have shown through
two-dimensional visualizations that representations may cluster
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according to their corresponding language, gender, or phone
class [7]; word-level context [6]; or speaker identity [8].

In this work, we explicitly investigate how speaker and
phonetic information are distributed in the representation space
learned by SSL models. We hypothesize that a good representa-
tion (one that is efficient and works well for predicting speech)
should implicitly disentangle these two sources of information,
since they vary independently in the processes that generate the
speech signal. If so, then the two types of information would be
represented in orthogonal subspaces of the representation space,
and it would be possible to perform speaker normalization by
identifying the speaker subspace and collapsing it.

We test our hypothesis in experiments with two SSL mod-
els (APC [10] and CPC [11]) trained on English LibriSpeech.
We use principal component analysis (PCA) to identify the sub-
spaces that capture most of the variance for speakers and for
phones, and confirm that these subspaces are nearly orthogo-
nal. We then test whether the speaker subspace generalizes to
unseen speakers by using it to perform speaker normalization
on a test set: we project the representations in the test set onto
the subspace orthogonal to the speaker subspace learned from
a training set. We use probing classifiers and an ABX phone
discrimination task to show that with the resulting representa-
tions, (a) little speaker information remains; and (b) within- and
across-speaker phone discrimination improves, outperforming a
baseline of utterance-level standardization [8]. Our results sug-
gest that these two SSL models implicitly disentangle speaker
and phone information into orthogonal subspaces.

2. Overview of the approach
We demonstrate the orthogonal speaker and phone subspaces in
the SSL representations using a simple approach, where we first
aggregate the representations by speaker and phone, then per-
form PCA on the resulting matrices1 and compare the principal
directions. We then show that collapsing the speaker subspace is
an effective speaker normalization technique, for both seen and
unseen speakers. These steps are explained in more detail below.

Aggregating representations by speaker and phone Suppose
that the dataset for analysis contains a set of speakers S and has
time-aligned phone transcriptions (which are used for analysis
only, and are not needed for speaker normalization). We denote
Zs to be the set of frame-level representation vectors (each of
dimension D) from an SSL model of a speaker s ∈ S. Similarly,
we define Zp to be the set of hidden vectors labeled as phone
p ∈ P , where P is a phone set; we define Zs,p to be the set of

1Performing PCA on the raw representations is far more compute-
intensive and did not give the clear patterns we see in Figure 1; the
aggregation step seems necessary to overcome noise.
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hidden vectors labeled as phone p ∈ P and of a speaker s ∈ S.
For our analysis, we aggregate the representations in three

ways: (1) by speaker (2) by phone, and (3) by each combination
of speaker and phone. This results in three matrices: The first,
Mspk, is a |S|×D matrix of speakers, where the s-th row Mspk[s]
is the average of all frames of a speaker s ∈ S, i.e., Mspk[s] =
avg(Zs). Analogously, Mphn is a |P | × D matrix of phones,
where the p-th row Mphn[p] is the average of all frames labeled as
p ∈ P , i.e., Mphn[p] = avg(Zp). Finally, Mjoint is a |S||P | ×D
matrix, where each row corresponds to avg(Zs,p) for a particular
speaker s and a particular phone p.

Identifying speaker and phone dimensions Applying PCA to
Mspk gives us |S| principal components that describe the direc-
tions that account for the largest variance among the speakers. A
speaker subspace is the subspace spanned by the eigenvectors
corresponding to the top eigenvalues. Similarly, PCA on Mphn

and Mjoint gives us a phone subspace and a joint speaker-phone
subspace, respectively.

In section 4, we analyze the relationships between these
matrices by measuring the similarity between their principal
directions. We also look at the projection of Mjoint on each of
its principal directions to explore what specific information is
encoded in each dimension.

Collapsing the speaker subspace If speaker and phonetic
information are represented in orthogonal subspaces, projecting
frames to the subspace orthogonal to the speaker subspace would
remove speaker information without affecting how well phonetic
information can be extracted. Specifically, for a hidden vector
z and a principal direction v, the vector z′ = z − (z⊤v)v
is orthogonal to v. This step can be performed on multiple
principal directions, and we refer to the projection as collapsing
the speaker space when v is a principal component of Mspk.
Before doing this, we need to choose the number of principal
components to use, which can be done based on the cumulative
variance explained by the principal components for the training
set, or by tuning development set performance (e.g., on phone
discrimination). To test whether a speaker subspace generalizes
across different sets of speakers, we use a speaker subspace
learned from a different set of speakers for collapsing.

3. Experimental setup
The two models used in this work are the autoregressive pre-
dictive coding (APC) model [10] and the contrastive predictive
coding (CPC) model [11]. Both CPC and APC are trained to
predict one or several future frame(s) given past context in the
same utterance, with the main difference being that CPC is opti-
mized with a contrastive learning objective, i.e. to distinguish
the true future frame from a set of negative samples, whereas
APC is directly optimized to minimize the distance between the
predicted and the target frames. These models, which learn rep-
resentations by trying to predict unobserved continuous frames
in the future, stand in contrast to some other SSL models such
as HuBERT [12] and wav2vec 2.0 [13], which perform masked
prediction of quantized units given context on both sides, and
which we intend to explore in future.2

We use two CPC models of different sizes and one APC

2We follow recent work in speech technology and machine learning
in using the term predictive coding to refer to error-driven learning
based on forward prediction, contrasting with masked prediction or other
objectives. In the more general sense used in information theory [14, 15]
and computational neuroscience [16, 17, 18], masked prediction can also
be viewed as a type of predictive coding.

Table 1: Summary of model specifications. Models are trained
on LibriLight (LL) or LibriSpeech (LS) train-clean.

Model LSTM Extracted Hidden
K

Training
layers layer units data

CPC-big 4 2 512 12 LL 6k hrs
CPC-small 2 2 256 12 LS 100 hrs
APC 3 3 512 3 LS 360 hrs

model. Both CPC-big and CPC-small are taken from the Zero
Speech 2021 baseline3. We use our own implementation of APC,
following [15]. The CPC and APC models differ in several ways.
CPC has a 5-layer convolution that extracts 10-ms frames from
wave samples for further processing, while APC operates on
10-ms Log Mel features. We extract the representations from the
LSTM component of the models (also called context network in
CPC). The prediction horizon, as parameterized by K, is 12 for
CPC and 3 for APC. The specific hyperparameters are chosen
based on prior work [19, 10] and are listed in Table 1.

For both CPC models, the negative samples are drawn from
the same speaker but not necessarily from the same utterance as
the frame to be predicted. It is possible that a CPC model that
draws negative samples without speaker restrictions would be
qualitatively different in terms of speaker and phone encoding,
but we limit the current study to the within-speaker sampling
case since it gives better phone classification results [19] and is
thus the more common setup.

3.1. Dataset

We use data from LibriSpeech [20], a corpus of English read
speech. We perform our initial analyses on the dev-clean
portion, which contains 8 minutes of speech for each of 19
male and 21 female speakers.4 For testing generalization, we
extract a speaker subspace from the train-clean-100 por-
tion, which contains 25 minutes of speech for each of 126 male
and 125 female speakers. We then evaluate on dev-clean and
test-clean by collapsing the speaker subspace learned from
train-clean-100. The test-clean portion consists of 8-
minute speech per speaker for 20 male and 20 female speakers.
The speakers occurred in the three sets are mutually disjoint.

The phone labels required for our anlayses were obtained
by performing forced alignment with an acoustic model created
according to the official Kaldi recipe for LibriSpeech data5. We
ignore frames aligned to “silence” and “spoken noise” labels in
our analysis, leaving 39 phone categories (i.e. |P | = 39).

3.2. Evaluation

To evaluate how much speaker information is removed and its
effect on the phonetic information in the representations, we
perform two types of tests. First, we train speaker and phone
probing classifiers. We use linear classifiers, which are trained
to predict either speaker or phone labels based on a single rep-
resentation frame. We train each classifier on a random half of
each speaker’s utterances, using the other half for testing. We
also use a machine ABX phone discrimination test [21]. This
test asks whether triphone x is more similar to triphone a than b,

3https://github.com/zerospeech/zerospeech2021_baseline
4The documentation claims that dev-clean contains 20 males and

20 females, but through our analysis, we found that one of the “male”
speakers (ID: 7976, name: JenniferRutters) appears to be female.

5https://github.com/kaldi-asr/kaldi/blob/master/egs/
librispeech/s5/run.sh
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Figure 1: Similarity (absolute value of dot product) between the
principal directions of Mphn & Mjoint (top) and Mspk & Mjoint

(bottom), computed from dev-clean using representations
from CPC-big. The patterns are similar for APC or CPC-small.

where a and x are tokens of the same type (e.g. ‘aba’) and b is of
a different type (‘apa’). The final ABX error rate is computed by
aggregating the error rate with (a, b, x) iterating over all tokens
combinations and triphone contrasts. In within-speaker ABX
test, each triplet are tokens produced the same speaker. In the
across-speaker setting, a and b are drawn from the same speaker
and x from a different speaker. We follow the Zero Speech
challenge splits [19] for within- and across-speaker ABX tests.

3.3. Baselines for speaker normalization experiments

Previous work [8] has shown that utterance-level standardization
(centering plus rescaling) effectively removes speaker informa-
tion from CPC representations, improving performance on ABX
tests and other tasks benchmarked in the Zero Speech 2021
challenge. We therefore use utterance-level standardization as a
baseline, but also report centering alone, which we found to work
better. For analyses where data from all speakers is available in
advance, we apply these approaches at the speaker level rather
than the utterance level for a fair comparison to our methods.

4. Analysis of subspaces
To examine the relationship between speaker and phone sub-
spaces, we compute the similarity between the top princi-
pal directions of Mspk,Mphn, and Mjoint, as extracted from
dev-clean. Since we only care about measuring orthogonal-
ity, we use the absolute value of the dot product as our similarity
measure; this ranges from 0 to 1.

When comparing the principal directions of Mphn and Mspk,
we found very low similarity: e.g., for the CPC-big model,
amongst the top 20 speaker directions, their similarity with the
most aligned phone direction is on average only 0.13 (variance:
0.002, maximum: 0.26), indicating that the speaker and phone
subspaces are nearly orthogonal.

We then compared the principal directions of Mphn and Mspk

to those of Mjoint, as shown in Figure 1. We see that, of the top
13 directions of Mjoint, only two (directions 1 and 2) are similar
to principal directions of both Mphn and Mspk. Directions 0 and
3-11 of Mjoint align only to phone directions, while direction 12
aligns only to a speaker direction. Moreover, while directions 1-
2 are somewhat aligned with both speaker direction 0 and phone
direction 1, this does not mean that speaker direction 1 is aligned
with phone direction 0—in fact, their cosine similarity is only
0.169. Taken together, these observations further support the
orthogonality of speaker and phone directions.

The preceding analysis also informs us of the relative vari-
ance of phone and speaker encoding. While Mjoint consists of
combinations of 40 speakers and 39 phones, i.e. roughly the
same number of speaker and phone categories, most of the top
principal directions are used to encode phones. That is, the SSL
representations encode much less inter-speaker variance and use
more directions to discriminate phones than speakers. This is
not a surprise since the training objective of both models en-
tail learning to discriminate between phones and not speakers.
What remains to be explained is how the models come to en-
code speaker information despite only being trained to predict
or discriminate phones within each speaker.

To better understand what is encoded in some of the top
principal directions, we visualize the projection of Mjoint onto
its dimensions 0, 1, and 12 (Figure 2). In the projection plot for
dimension 0, we can see vowels lying on the positive end and
fricatives and affricates lying on the negative end, indicating that
this dimension discriminates phonetic categories along a sonor-
ity gradient while maintaining no information about speaker
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Figure 2: Projection of Mjoint (extracted from dev-clean using CPC-big) onto its principal dimension 0 (left), 1 (middle), and 12
(right). Each dot represents a row in Mjoint, with each speaker plotted in a single column and phone identities colour-coded. The first 19
columns represent male speakers and the rest females. The legend on top is ordered by each phone’s average projection on dimension 0.
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Table 2: Probing (speaker & phone) and ABX (within- & across-
speaker) error rates on dev-clean.

Model Error rate (%) Original Speaker-level Speaker space
centered +rescaled collapsed

CPC-big

Speaker 0.46 76.39 +12.00 96.55
Phone 24.32 24.29 +2.14 24.49
ABX Within 3.38 3.39 +1.35 3.20
ABX Across 4.11 3.98 +1.34 3.75

CPC-small

Speaker 11.04 67.95 +11.21 95.54
Phone 35.48 35.10 +1.07 36.34
ABX Within 6.22 6.14 +1.97 5.11
ABX Across 8.10 7.47 +1.69 6.78

APC

Speaker 15.87 83.42 +4.95 97.23
Phone 35.93 35.78 +1.20 36.44
ABX Within 6.77 6.50 +0.50 6.34
ABX Across 9.83 8.96 +0.36 9.04

Figure 3: Speaker classification (blue) and across-speaker
ABX (orange) on dev-clean after collapsing speaker sub-
spaces learned from either train-clean-100 (solid lines) or
dev-clean (dashed lines). The large dots are where the number
of dimensions covers 95% of the variance.

differences. Dimension 1, as well as dimension 2 which is not
shown here, differentiate between genders while the consistent
ordering of the coloured dots across all columns implies that they
also capture some phonetic information. In contrast, dimension
12 contains relatively greater inter-speaker variance, albeit still
much smaller than variance between phones captured in dimen-
sion 0 and 1. The projection on these dimensions are consistent
with our observation from the similarity analysis.

5. Application to speaker normalization

Collapsing speaker subspace of seen speakers We first ex-
plore speaker normalization for a set of known speakers, by
learning the speaker subspace from dev-clean, and collapsing
the speaker directions on the same dataset. Since the number of
speakers is small (40) relative to the number of dimensions (256
or 512), we collapse all 40 of the speaker directions. (See be-
low for results with fewer directions collapsed.) Table 2 reports
results in comparison to speaker-level centering and standardiza-
tion, because here all speakers are known in advance. Utterance-
level centering and standardization show similar results but are
slightly less effective in removing speaker information.

Our method shows the best ABX results in nearly all cases,
as well as close to 100% speaker error rates and little change
in phone error rates, indicating that this method removes nearly
all the speaker information while improving the accessibility of
phone information for unsupervised tasks. We also see from the
baselines that removing speaker information need not always
improve phone discrimination: in particular, applying rescaling
on top of centering increases both the speaker error rate and the
phone classification and ABX error rates.

Collapsing speaker subspace of unseen speakers We first

Table 3: Results of speaker normalization on dev-clean (top)
and test-clean (bottom) by collapsing speaker subspaces
learnt from train-clean-100.

Model Error (%) Original Utt. centered Collapsed

d
e
v
-
c
l
e
a
n

CPC-big
Speaker 0.46 69.88 64.51
ABX Within 3.38 3.43 3.20
ABX Across 4.11 4.06 3.76

CPC-small
Speaker 11.04 69.20 78.12
ABX Within 6.22 5.86 5.29
ABX Across 8.10 7.22 6.92

APC
Speaker 15.87 77.3 79.74
ABX Within 6.77 6.42 6.38
ABX Across 9.83 9.02 9.14

t
e
s
t
-
c
l
e
a
n CPC-big ABX Within 3.29 3.27 3.10

ABX Across 4.22 4.11 4.01

CPC-small ABX Within 5.86 5.54 4.85
ABX Across 7.48 6.91 6.37

APC ABX Within 6.62 6.13 6.19
ABX Across 9.47 8.72 8.98

explore how results vary depending on the number of dimensions
(and % of variance) that are removed. Figure 3 illustrates the
results on CPC-big, comparing the case where the speaker sub-
space is learned and applied to the same speakers and the case
where we apply it to new speakers. When we have relatively few
speakers as in dev-clean, and we collapse the speaker subspace
of the same speakers, including all of the speaker dimensions
is helpful. However, we see that when generalizing from the
large number of speakers in train-clean-100, many of the
lower principal components appear to be overfitting: after about
50 dimensions, speaker error rate on the dev set increases only
slowly while ABX error also begins to rise.

Finally, after learning the speaker directions from the train-
ing set, we choose the number of directions to collapse based on
the best across-speaker ABX scores on the development set, and
present results for both the development and test sets in Table 3.
For CPC-big, CPC-small, and APC, we collapse speaker sub-
spaces that explain 98%, 95%, and 95% of training variance (57,
36, and 30 dimensions, respectively). We compare to utterance-
level centering, the baseline that gives the best results for the
ABX task (of those applicable to previously unseen speakers).

Both methods remove a similar amount of speaker informa-
tion, but our method is better at the ultimate goal of improving
phone discrimination in nearly all cases (the exception being the
APC model on the test set). Moreover, it can be applied in a
fully streaming setting since the speaker subspaces to collapse
are computed in advance.

6. Conclusions
In analyses of SSL speech representations based on predictive
coding models, we showed that speaker information and pho-
netic information are encoded in orthogonal dimensions of the
representation space, indicating that these models are implicitly
disentangling the two sources of information. This insight led to
a simple but effective speaker normalization technique that re-
quires only speaker-labeled training data, and leads to improved
phone discrimination on the test set. Important avenues for fu-
ture work include investigating the extent to which the speaker
dimensions generalize to out of domain data (e.g., other lan-
guages or genres of speech), and whether the orthogonality we
found extends to other SSL models based on different principles
(e.g., masked prediction [12, 13]).
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A. Baevski, E. Dunbar, and E. Dupoux, “The Zero Resource
Speech Benchmark 2021: Metrics and baselines for unsupervised
spoken language modeling,” arXiv:2011.11588 [cs, eess], Dec.
2020, arXiv: 2011.11588.

[20] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech:
An ASR corpus based on public domain audio books,” in 2015
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). South Brisbane, Queensland, Australia:
IEEE, Apr. 2015, pp. 5206–5210.

[21] T. Schatz, V. Peddinti, F. R. Bach, A. Jansen, H. Hermansky, and
E. Dupoux, “Evaluating speech features with the minimal-pair abx
task: analysis of the classical mfc/plp pipeline,” in Interspeech,
2013.

2972


