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Abstract
Training large-scale speaker verification systems on consumer
GPUs is difficult due to the memory consumption of the exist-
ing networks being proportional to the number of layers. In this
paper, a novel family of Reversible Neural Networks (RevNets)
is proposed for memory-efficient speaker verification. Specifi-
cally, we introduce two types of RevNets, namely partially and
fully reversible networks, which alleviate the need to store ac-
tivations in memory during back-propagation. Consequently,
RevNets require nearly constant memory costs as the network
depth increases. Experiments on Voxceleb show that RevNets
achieve up to 15.7x memory savings, while maintaining nearly
identical parameters and performance when compared to the
vanilla ResNets. To our knowledge, this is the first work to
investigate memory-efficient training for speaker verification.
Our results indicate the potential of reversible networks as a
more efficient backbone for resource-limited training scenarios.
Index Terms: speaker verification, memory-efficient training,
reversible neural networks

1. Introduction
Speaker verification (SV) is a biometric identification task that
involves confirming a person’s identity by analyzing the voice
characteristics. A typical SV system consists of two compo-
nents: an embedding extractor and a similarity scorer. The
embedding extractor is responsible for extracting the speaker
embedding from the variable-length utterances, while the simi-
larity scorer calculates the similarity between the embeddings.
Traditionally, i-vector [1] with probabilistic linear discriminant
analysis (PLDA) [2] is the most commonly-used method. Cur-
rently, deep speaker embedding learning based on neural net-
works becomes the predominant approach [3, 4, 5, 6, 7].

Recently, the performance of speaker verification systems
has been significantly improved as the depth of neural networks
increases. For example, [7] presents a depth-first variant of
ResNet, substantially increasing the network’s depth to 233 lay-
ers. Furthermore, [8] makes r-vector deeper and extends the
depth of ResNet to 293. Although deeper and larger neural net-
works have achieved remarkable performance enhancements,
the memory consumption of existing networks is directly pro-
portional to the number of layers during training. This charac-
teristic poses a challenge for training large-scale speaker veri-
fication systems on consumer GPUs. In general, modern neu-
ral networks are trained using back-propagation algorithm [9],
which necessitates the storage of intermediate network activa-
tions in memory. This procedure incurs a memory cost that
scales proportionally with the depth of network, which means
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Figure 1: GPU Memory Usage vs. Parameter Number

that training memory consumption increases linearly with the
growth of network depth [10, 11, 12]. On the other hand, graph-
ics processing units (GPUs) have limited memory capacity [13].
To reduce memory usage in large-scale SV systems training, a
common way is to decrease the batch size. However, exces-
sively small batch sizes can hinder the accurate estimation of
gradients and batch normalization, ultimately hurting the sys-
tem performance. The effective training of significantly deeper
networks, particularly on consumer GPUs, is a critical and chal-
lenging task for speaker verification.

In this paper, we propose a novel family of Reversible Neu-
ral Networks (RevNets) for memory-efficient speaker verifica-
tion. Specifically, two types of RevNets, namely partially and
fully reversible networks, are introduced. They comprise a stack
of reversible blocks where each layer’s activations can be recon-
structed from the next layer’s ones. This feature enables us to
perform back-propagation without the requirement of storing
the activations in memory. As a result, RevNets enjoy the bene-
fit of maintaining nearly constant memory usage as the depth of
network increases. Experiments on Voxceleb demonstrate that
compared to the conventional ResNets, the proposed RevNets
achieve a memory savings of up to 15.7x, while maintaining
nearly identical parameters and performance. To our knowl-
edge, this is the first work to explore the feasibility of memory-
efficient training for speaker verification. Our results illustrate
that reversible networks have the potential to serve as more ef-
ficient backbones for resource-constrained training scenarios.

2. Related Work
Deep Speaker Embedding Learning: [14] makes a pioneer-
ing effort to apply deep neural networks to speaker verification.
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Subsequently, diverse network architectures have been exten-
sively explored. [15] proposes a time-delay neural network
(TDNN) for text-independent speaker verification. Addition-
ally, x-vector [3] and ECAPA-TDNN [5] incorporate several
architectural enhancements to improve performance. Mean-
while, the winner of VoxSRC 2019 [4] introduces ResNet as
the speaker embedding extractor, which has gained growing
popularity in the SV field [16, 17]. Moreover, [18] presents
a transformer-based system with self-attention encoder to yield
speaker embedding. Plus, [19] builds a pure multilayer percep-
tron (MLP) network for SV task. Recently, much deeper and
larger neural networks have been developed by [7, 8], resulting
in remarkable performance improvements.

Reversible Architectures: Reversible networks are a fam-
ily of architectures which contain a stack of reversible blocks
with the ability of recovering the intermediate activations
through the inverse functions during back-propagation. They
have been successfully adopted in various fields [20, 21, 22,
23, 24, 25, 26]. Specially, [20] proposes a reversible archi-
tecture for image classification based on nonlinear independent
components estimation (NICE) [27] transformation. [21, 22]
introduce reversible U-Net for memory-efficient medical image
segmentation. [23] develops reversible 3D convolutional neural
networks for snapshot compressive imaging. [24, 25] present
reversible transformer for neural machine translation. [26] at-
tempts to reduce the memory costs for speech enhancement us-
ing neural ordinary differential equations (NODEs).

3. Reversible Neural Networks
In this section, we firstly introduce the back-propagation al-
gorithm and reversible operators. Then, two different Re-
versible Neural Networks (RevNets), namely partially and fully
RevNets, are proposed for memory-efficient speaker verifica-
tion.

3.1. Preliminaries

Back-propagation: The back-propagation algorithm [9], also
known as reverse-mode automatic differentiation, computes the
gradients of the loss function with respect to the neural net-
work’s parameters by traversing the computation graph in a
backward direction using the chain rule. It is the default train-
ing algorithm for modern neural networks, which is adopted in
prevalent deep learning frameworks including Tensorflow [10],
Pytorch [11] and JAX [12]. Given a computation graph G, we
represent the topological ordering of the nodes as v1, . . . , vl,
where vl corresponds to the loss function L. Each node can
be defined as a function fi of its parent nodes in G. The back-
propagation algorithm can compute the total derivative dL/dvi
for each node vi in reverse topological order using the chain
rule as follows:

dL
dvi

=
∑

j∈Child(i)

(
∂fj
∂vi

)T
dL
dvj

(1)

where Child(i) stands for the children of node vi in G.
∂fj/∂vi is the Jacobian matrix, which calculates the partial
derivative of the fj with respect to the current node vi.

Due to the Jacobian matrix, the back-propagation algorithm
requires the availability of intermediate activations to compute
the derivatives with respect to parameters. In general, this is
accomplished by caching the intermediate activations in GPU
memory for later use in the backward pass, which makes the
memory usage linearly dependent on the network depth.

Figure 2: Comparison between non-reversible operator (a) and
reversible operator (b).

Reversible Operator: Reversible operator refers to a type
of transformation with the property of analytic invertibility, im-
plying that the input of the transformation can be reconstructed
from its output through an inverse operation. Traditional neural
networks are mainly constructed using non-reversible operators.
In contrast, a network composed of reversible operators allevi-
ates the need to store intermediate activations in GPU memory
during training since they can be recomputed on the fly from
the output in the backward pass. Therefore, reversible neural
networks effectively decouple the memory usage from the net-
work depth, resulting in substantial memory savings during the
training of large-scale networks. Figure 2 schematically depicts
the differences between reversible and non-reversible operators.
For an inverse function y = f(x), the input x can be recovered
by calling x = f−1(y) in the backward pass. Hence, the mem-
ory costs can be saved by discarding the intermediate activation
x during the forward pass.

In this paper, we investigate memory-efficient training for
speaker verification. Specifically, two different Reversible Neu-
ral Networks (RevNets), namely partially and fully RevNets,
are proposed in the following section.

3.2. Partially Reversible Neural Networks

In this part, we firstly introduce partially reversible neural net-
works based on ResNet [28]. In the vanilla ResNet, He et al.
propose two residual architectures, namely Basic block and Bot-
tleneck block, as the network building components. Each block
consists of a stack of convolution layers, batch normalization
(BN) and non-linear activation function (ReLU).

To construct a reversible version of ResNet, the primary
challenge is how to transform the non-reversible residual blocks
into their reversible counterparts. Inspired by [20], we begin by
partitioning the input activation x into x1 and x2 evenly along
the channel dimension. By utilizing the additive coupling rule,
the initial residual block can then be converted into a reversible
one as illustrated below.

y1 = x1 + F(x2)

y2 = x2 + G(y1)
(2)

where (x1, x2) are inputs and (y1, y2) are outputs. F and G can
be the Basic or Bottleneck block.

For the reverse process, the input activations can be recon-
structed from the output as follows:

z1 = y1

x2 = y2 − G(z1)
x1 = z1 −F(x2)

(3)
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Algorithm 1 Back-propagation for Reversible Blocks

Input: (y1, y2); (dL/dy1, dL/dy2)
Output: (x1, x2); (dL/dx1, dL/dx2); (dL/dwF , dL/dwG)

1: z1 ← y1;
2: x2 ← y2 − G(z1);
3: x1 ← z1 −F(x2);

4: dL
dz1
← dL

dy1
+

(
∂G
∂z1

)T
dL
dy2

;

5: dL
dx2
← dL

dy2
+

(
∂F
∂x2

)T
dL
dz1

;

6: dL
dx1
← dL

dz1
;

7: dL
dwF

←
(

∂F
∂wF

)T
dL
dz1

;

8: dL
dwG
←

(
∂G
∂wG

)T
dL
dy2

;

Note that the invertibility property can only hold true when
the stride in residual block F and G is 1. Otherwise, the layer
will discard information, making it non-reversible. The orig-
inal ResNet architecture includes spatial downsampling at the
start of each stage, which is achieved by convolution with a
stride of 2. This means that these downsampling layers can
not be converted into reversible layers using the above method.
Therefore, we retain these non-reversible downsampling layers,
yielding partially reversible neural networks that include a few
non-reversible layers.

For reversible blocks, we can perform back-propagation
without storing intermediate activations. Specifically, given
the activations (y1, y2) and their total derivatives, we can first
reconstruct the input activations (x1, x2). Afterward, the to-
tal derivative with respect to (x1, x2) and any parameters as-
sociated with F and G can be calculated using Algorithm 1.
For non-reversible layers, the explicit storage of activations is
mandatory. However, the number of such layers is small. The
total memory usage is still independent of the network depth.

3.3. Fully Reversible Neural Networks

As discussed above, the conventional spatially downsampling
operations such as strided convolution and max-pooling are in-
herently non-invertible because they involves altering the spa-
tial dimensionality of input activations. This process leads to
the loss of some information, thereby making the operations
non-bijective. As a result, the downsampling activations still
have to be cached in the backward pass. We call reversible neu-
ral networks that contain non-reversible downsampling layers
as partially RevNets. In this section, we aim to develop fully
reversible neural networks by making the downsampling oper-
ation used in the vanilla ResNets invertible.

[29] introduces a pixel squeezing operation for image data.
It begins to divide the image into subsquares of shape C×2×2
per channel, followed by a reshape operation that converts these
subsquares to 4C × 1 × 1. The squeezing operation can trans-
form a C × H × W tensor into a 4C × H/2 × W/2 shape
by effectively trading spatial size for number of channels in an
invertible way. Inspired by this idea, we attempt to achieve the
downsampling effect by introducing a ratio r to rearrange the
feature into a shape of r2C × F/r × T/r for an audio fea-
ture with the shape C × F × T where C, F and T denote the
channel, frequency and time dimension respectively. By replac-
ing the non-reversible downsampling layers with this invertible
squeezing operation, fully reversible neural networks are finally
obtained.

4. Experimental Setup
4.1. Datasets

We conduct experiments on Voxceleb1&2 [30, 31] datasets.
The development set of Voxceleb2 is adopted as training data.
The whole Voxceleb1 is used as the evaluation data. Perfor-
mance is reported on the three official trials: Vox1-O, Vox1-E
and Vox1-H. In addition, data augmentation techniques are uti-
lized to increase the diversity of training data. Specifically, we
generate extra data samples by adding noise from MUSAN [32]
and RIR dataset [33] in an online manner [34]. Meanwhile, the
speed of utterances is adjusted by a factor of 0.9 and 1.1 [35],
making the number of speakers and utterances tripled.

4.2. Training Settings

During training, we randomly chunk a 200-frame segment from
each utterance. Then 80-dimensional Fbank with a window
length of 25ms and a shift of 10ms are extracted as the input
acoustic feature. AAM-softmax [36] with a margin of 0.2 and
a scale of 32 is employed as the loss function. The optimizer is
stochastic gradient descent (SGD) with momentum of 0.9 and
weight decay of 1e-4. The learning rate is scheduled by an ex-
ponential function which decreases from 0.1 to 1e-5. The di-
mension of speaker embedding is set to 256. Both ResNets and
RevNets stick to the same training settings.

4.3. Evaluation Protocol

For testing, we use cosine distance as the similarity criterion.
Then, the scores are calibrated using adaptive score normaliza-
tion (AS-Norm) [37] with an imposter cohort size of 600. Equal
error rate (EER) is reported for performance measurement.

5. Results and Analysis
5.1. Architectural Specifications

In the experiments, ResNet34, 101 and 152 are adopted as the
baseline systems. To align with the parameter number, we elab-
orately design their corresponding reversible counterparts to
make them have similar parameters across different regimes. In
Table 1, detailed architectural configurations are listed, includ-
ing the network depth (layer number), width (channel number in
each block for different stages), block type (Basic or Bottleneck)
and parameter number. We propose a series of variants with
different configurations for each baseline system. For example,
partially RevNet46 and fully RevNet57 are introduced based
on Basic block with similar parameters to ResNet34. Like-
wise, four different reversible architectures are developed for
ResNet101 and 152 under nearly identical or fewer parameters.

5.2. Performance Comparison

From Table 1, it can be observed that our proposed reversible
architectures exhibit a comparable performance to the vanilla
ResNets across all models (ResNet34, 101 and 152). Specifi-
cally, both partially and fully reversible counterparts shows sim-
ilar EERs on Vox1-O, E, and H when compared to ResNet34.
Interestingly, we find that reversible variants can be constructed
based on Basic block for ResNet101 and 152. For example,
RevNet126 and 137, both relying on Basic block, achieve simi-
lar performance to ResNet101 with Bottleneck block. This phe-
nomenon highlights the superior modeling capacity of Basic
block for reversible networks. Moreover, Basic-based RevNets
have fewer parameters compared to Bottleneck-based ones.
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Table 1: Architectural details and EER results of ResNets and our proposed RevNets on the Voxceleb1 dataset. All memory usage and
maximum batch size are measured on a single 11GB 2080Ti GPU with 2-seconds utterances.

System Reversible Depth Width Block # Params Memory
(GB/utter)

Maximum
Batch Size Vox1-O Vox1-E Vox1-H

ResNet34 – 34 [32, 64, 128, 256] Basic 6.6M 0.06 154 0.96 1.01 1.86

RevNet46 Partially 46 [48, 96, 192, 300] Basic 6.7M 0.04 235 0.85 1.01 1.85
RevNet57 Fully 57 [48, 96, 192, 300] Basic 6.1M 0.03 300 0.89 0.98 1.83

ResNet101 – 101 [32, 64, 128, 256] Bottleneck 15.9M 0.33 31 0.62 0.80 1.48

RevNet126 Partially 126 [48, 96, 192, 384] Basic 15.0M 0.04 213 0.58 0.80 1.48
RevNet137 Fully 137 [48, 96, 192, 384] Basic 14.2M 0.03 297 0.58 0.80 1.49
RevNet140 Partially 140 [48, 96, 192, 300] Bottleneck 15.8M 0.15 62 0.60 0.80 1.43
RevNet156 Fully 156 [48, 96, 192, 300] Bottleneck 15.6M 0.12 73 0.59 0.81 1.45

ResNet152 – 152 [32, 64, 128, 256] Bottleneck 19.8M 0.47 22 0.55 0.74 1.39

RevNet178 Partially 178 [48, 96, 192, 384] Basic 18.3M 0.04 211 0.54 0.75 1.41
RevNet197 Fully 197 [48, 96, 192, 384] Basic 18.2M 0.03 295 0.53 0.76 1.42
RevNet230 Partially 230 [48, 96, 192, 300] Bottleneck 19.6M 0.20 48 0.49 0.72 1.33
RevNet246 Fully 246 [48, 96, 192, 300] Bottleneck 19.4M 0.12 73 0.50 0.73 1.35

5.3. Memory Savings

To evaluate the memory consumption of each model, memory
usage per utterance and maximum batch size are measured on
a single 11 GB 2080Ti GPU using 2-seconds audio segments.
From Table 1, we can see that the proposed reversible net-
works achieve notable memory savings under various scenarios.
Specifically, for ResNet34, its reversible counterparts, namely
RevNet46 and 57, demonstrate an approximate 2x memory sav-
ings. Moreover, both Basic and Bottleneck-based reversible
variants of ResNet101 and 152 attain remarkable memory gains.
By comparison, Basic-based RevNets exhibit more promising
ability, achieving up to 15.7x reduction in memory usage com-
pared to the vanilla networks. This can be attributed to the ca-
pability of reversible networks to reduce the necessity of stor-
ing intermediate activations during back-propagation. In addi-
tion, fully reversible networks has a greater advantage in mem-
ory savings over partial ones, which is reasonable since non-
reversible downsampling layers in partially reversible networks
are replaced with invertible operation.

5.4. Maximum Batch Size

For maximum batch size, we aim to determine the largest num-
ber of utterances that can be included in a batch without ex-
ceeding the GPU memory capacity. It displays an opposite
trend to memory usage per utterance, as the preserved mem-
ory can be utilized to augment the training batch size. For
example, RevNet57 can increase batch size by 1.9x compared
to ResNet34. Similarly, RevNet197, the reversible variant of
ResNet152, boosts the maximum batch size from 22 to 295 ut-
terances. These encouraging results indicate the potential for
training deeper models on consumer GPUs.

5.5. Analysis of Memory Usage and Parameter

In this section, we provide a comprehensive analysis of the
correlation between the memory utilization and the parameter
number for both ResNets and the proposed RevNets. As illus-
trated in Figure 1, ResNets exhibit a linear relationship between
memory usage and network depth, which is consistent with the
theoretical analysis provided in section 3.1. This is primarily
due to the need to retain the intermediate activations during

back-propagation, which scales up with the network depth. In
contrast, the proposed RevNets demonstrate the ability to main-
tain consistent memory consumption even as network depth
increases. Specifically, both Partially-RevNets (Basic) and
Fully-RevNets (Basic) retain a fixed memory usage of 0.04GB
and 0.03GB per utterance respectively, irrespective of network
depth. This desirable property arises from the reversible na-
ture of RevNets, which can perform back-propagation without
the requirement to cache intermediate activations. As a result,
memory consumption is decoupled from network depth. More-
over, fully reversible networks exhibit superior memory utiliza-
tion efficiency when compared to partial ones. For example,
Fully-RevNets (Bottleneck) achieve up to 40% memory reduc-
tion over Partially-RevNets (Bottleneck) with similar parame-
ters and performance. In summary, the proposed RevNets can
achieve significant memory savings of up to 15.7x with similar
parameters and performance to the vanilla ResNets, indicating
the great promise for memory-efficient training.

6. Conclusions
In this paper, we propose a novel family of Reversible Neural
Networks (RevNets) for memory-efficient speaker verification.
Specifically, two types of RevNets, namely partially and fully
reversible networks, are introduced which reduce the necessity
of storing intermediate activations during back-propagation. As
a result, RevNets enjoy the advantage of retaining nearly con-
stant memory usage as the depth of network increases. Exper-
iments on Voxceleb demonstrate that compared to the vanilla
ResNets, the proposed RevNets achieve up to 15.7x mem-
ory savings with similar parameters and performance. To our
knowledge, this is the first work to investigate memory-efficient
training for speaker verification. Our results illustrate that re-
versible networks have the potential to serve as more efficient
backbones for resource-constrained training scenarios.
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