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Abstract
Audio-only speech separation methods cannot fully exploit
audio-visual correlation information of speaker, which lim-
its separation performance. Additionally, audio-visual sepa-
ration methods usually adopt traditional idea of feature splic-
ing and linear mapping to fuse audio-visual features, this ap-
proach requires us to think more about fusion process. There-
fore, in this paper, combining with the changes of speaker
mouth landmarks, we propose a time-domain audio-visual tem-
poral convolution attention speech separation method (AVTA).
In AVTA, we design a multiscale temporal convolutional atten-
tion (MTCA) to better focus on contextual dependencies of time
sequences. We then use sequence learning and fusion network
composed of MTCA to build a separation model for speech sep-
aration task. On different datasets, AVTA achieves competitive
performance, and compared to baseline methods, AVTA is bet-
ter balanced in training cost, computational complexity and sep-
aration performance.
Index Terms: audio-visual fusion, time-domain, speech sepa-
ration, temporal convolutional attention, training cost

1. Introduction
Similar to the “cocktail party problem” where humans can track
target speech well in a noisy environment [1], the main task of
speech separation is to separate target speech in mixture, which
is also a basic task of signal processing [2].

In the recent decade, neural network modeling methods
have been applied to various aspects of speech processing [3],
and the performance of speech separation methods based on
deep learning has also been improved significantly. These meth-
ods use a data-driven approach to learn better separation mod-
els, which greatly compensate for the shortcomings of tradi-
tional methods.

At present, audio-only single-channel speech separation
methods are mainly based on deep neural networks to extract
the time and frequency characteristics of speech signal. Specif-
ically, frequency-domain methods usually perform short-time
Fourier transform (STFT) on speech signal to obtain the spec-
trum, which is used as the input of the neural network to esti-
mate time frequency (T-F) mask of the source [2,4–6]. But these
methods have problems with phase reconstruction and latency
in calculating the spectrogram. The time-domain methods [7]
such as Conv-TasNet and DPRNN [8, 9], etc., directly model
time-domain signal to separate the source. However, these
methods set a smaller filter length (i.e. convolution kernel size)
of the encoder to obtain a longer coded sequence and improve
the separation performance, which undoubtedly makes separa-
tion network to process longer sequences, and also dramatically
increases the complexity and training cost of the model.

Visual information has been demonstrated to help our un-
derstanding of speech [10], and it has already yielded many ap-
plications in speech enhancement, speech recognition and ac-
tive speaker detection [11–15]. Therefore, speech separation
combined with visual information is a natural idea. Audio-
visual single-channel speech separation mainly learns audio-
visual fusion strategy [16] or association relationship [17] to as-
sist separation. Where, audio-visual deep clustering for speech
separation(A-VDC) [17] has strong generalization ability and
robustness to different number of speakers, but frequency-
domain modeling and complex network structure make it more
suitable for offline systems. Additionally, time-domain audio-
visual separation method [18], expands Conv-TasNet [8]. But,
it obtains the correlation information of the speech and lip
movements of speakers by pre-training lip-reading network,
which makes model unable to be trained end-to-end. Recently,
the audio-visual speech separation method Visual Voice [19]
learns audio-visual embeddings and dependencies from un-
labeled videos and achieves better performance on multiple
datasets. However, Visual Voice adds a T-F transformation step
to the original complex cross-modal learning network to ob-
tain the spectrogram and perform speech separation, which in-
creases the modeling difficulty.

Based on the above analysis, we propose an audio-
visual temporal convolution attention speech separation model
(AVTA) to learn contextual and cross-modal relations of audio-
visual sequences and perform separation task. In AVTA, in-
spired by Conv-TasNet [8] and temporal convolutional network
(TCN) [20], and considering the advantages of attention mecha-
nism in speech separation [21], we design a multiscale temporal
convolutional attention network (MTCA) to focus on and learn
context dependencies between sequences. In the whole deep
separation framework, we first use cross-attention to get the
cross-correlation information of audio-visual sequences, then
use MTCA to learn the context dependence of audio-visual se-
quences to fuse audio-visual features. Afterwards, the fused
audio-visual feature is fed into separation network to predict
mask and obtain the source of each speaker. In general, the
contributions of this paper are as follows: 1) We design MTCA
network for dependency learning of feature sequences. 2) Com-
bining with MTCA, we design an fusion network for audio-
visual feature fusion, and construct an separation framework to
improve performance. 3) Compared with baseline method, we
further reduce the coded sequence length, and better balance
training cost and separation performance of AVTA.

2. Our speech separation network
As shown in Figure 1, AVTA includes four modules: audio and
visual encoder, sequence learning network, fusion and sepa-
ration network, decoder. The encoder maps visual and audio
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Figure 1: The top of the picture is the AVTA network structure. The bottom right is the MTCA network structure.

features in a high-dimensional space. Sequence learning net-
work obtains context-dependent and cross-correlation informa-
tion of audio-visual feature sequences. Fusion and separation
network fuses the audio-visual features and computes the sepa-
ration mask. Decoder calculates speech waveform of speaker.

2.1. Audio and visual encoders

The time-domain mixed speech signal can be denoted as
x ∈ RB×1×Lseqa , which includes speech of C speakers
sa1 , ..., saC ∈ RB×1×Lseqa :

x =
C∑

i=1

sai , i = 1, 2, ..., C, (1)

where B denotes batch size, i is the i-th speaker, Lseqa denotes
the total number of samples of the speech signal. In the audio
encoder, x is intercepted into segments of length Ta, then these
segments are combined into the input matrix X ∈ RB×Ta×1:

AudioEncoder (X) = F(conv1d(X, La, Sa, Cin, Cout)), (2)

where conv1d(·) is 1D convolution operation, La and Sa are
size and stride of the convolution kernel respectively. Cin = 1
and Cout = Na are number of input and output channels of
the convolution respectively. F(·) represents the rectified lin-
ear unit (ReLU) [22], and the output of audio encoder can be
denoted by Ea ∈ RB×Ka×Na , where Ka = 2(Ta−La)

La
+ 1 is

output coded sequence length.
The visual signal can be denoted as yi ∈ RB×Ni×Lseqv ,

which is composed of the speaker mouth feature landmarks.
Where feature dimension of the i-th speaker is Ni = N/C,
Lseqv is the frame length of the video stream. In the visual en-
coder, yi is truncated into segments y′i ∈ RB×Ni×Tv of length
Tv . Then, mouth feature landmarks y′i of C speakers in mixture
are spliced in direction Ni to form a matrix Y ∈ RB×Tv×N .
Afterwards, Y will be fed into the visual encoder:

Y = concat
[
y′>1 , y′>

2
· ··, y′>C

]
, (3)

VisualEnoder (Y) = F(conv1d(Y, Lv , Sv , Cin, Cout)), (4)

when mixture contains C = 2 speakers, we set Ni = 20, the in-
put channels of the visual encoder are Cin = N = NiC = 40,
the output channels are Cout = Nv = Na, Lv and Sv are convo-
lution kernel size and stride of the visual encoder, respectively.
The output of the visual encoder is E′v ∈ RB×Kv×Na , where
the calculation process of Kv is similar to Ka.

2.2. Audio-visual sequence learning network

The encoded audio and visual sequences is not synchronized in
time, therefore, we use linear interpolation to upsample E′v and
output Ev ∈ RB×Ka×Na .

2.2.1. Multiscale temporal convolutional attention network

The MTCA is composed of multiple temporal attention blocks
(TABlocks). As shown in Figure 1, our TABlocks includes two
parts, convolution network and attention layer. Convolutional
network is similar to the TCN, which uses depthwise separable
convolution DSconv(·) [23] to reduce the model size. This net-
work allows AVTA to obtain different time scales features by
setting different convolution kernel dilation coefficients. Then,
we concatenate attention layer so that the network focus on
the sequence dependence on different time scales. The audio
MTCA can be defined as follows:

DSconv
(
Ea,K

d
DS

)
= G

(
G (Ea ~K1×1) ~Kd

DS

)
, (5)

AttLayer = softmax
(
QaKT

a√
d

)
Va, (6)

TABlock
(
Ea,K

d
DS

)
= AttLayer(DSconv(Ea,K

d
DS)), (7)

MTCA (Ea,M) = TABlock(TABlock(Ea,K
2m

DS) · ··)︸ ︷︷ ︸
M

, (8)

where K1×1 is coefficient matrix of 1D point convolution ker-
nel, Kd

DS represents kernel size of DSconv(·) [23] operation
with dilation coefficient d, and their stride size is 1. G (·) rep-
resents parametric rectified linear unit (PReLU) [24] and global
layer normalization (gLN) [8]. AttLayer(·) is attention layer,
and the query, key and value of audio attention layer are Qa,
Ka, Va, respectively, which come from the linear projection
of the input matrix. TABlock(·) represents temporal attention
block, the stacking of multiple TABlock(·) forms a MTCA (·),
m = 0, 1, 2...,M − 1 represents the number of iterations of
TABlock(·). The output audio and visual feature matrix of
multi-layer MTCA (·) is Fa,Fv ∈ RB×Ka×Na .

2.2.2. Feature sequence learning network

This network includes MTCA and the cross-attention layer.
The cross-attention layer contains audio-to-video and video-to-
audio attention layer. This cross-attention layer is the similar to
Eq. (6), the query in the audio-to-video attention layer is Qv ,
the key and value are Ka and Va, respectively [15], and vice
versa to video-to-audio attention layer. Such a structure makes
audio and visual information no longer isolated, but interrelated,
which helps us to fuse the audio and visual information.

2.3. Audio-visual fusion and separation network
The fusion process of audio and visual feature Fa, Fv can be
expressed by the following formula, :

Ua = norm(PointConv(Fa, Na, N
fusion
a )), (9)

Uv = norm(PointConv(Fv ,Na, N
fusion
v )), (10)

Vav = MTCA(concat [Ua,Uv ]), (11)
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where PointConv(·) is 1D point convolution, its input dimen-
sion are Na, and output dimensions are N fusion

a and N fusion
v re-

spectively. The 1D point convolution PointConv(·) is used to
adjust the weight distribution of each audio-visual feature, and
make condition N fusion

a + N fusion
v = Na satisfy. The norm(·) is

layer normalization, which ensures the scale invariance of the
data during the fusion of Fa and Fv . Finally, we will splice
Ua,Uv to get Uav ∈ RB×Ka×Na . The Uav will then be fed
into the MTCA to model the contextual information of the fu-
sion feature sequence again, and obtains the final audio-visual
fusion feature Vav ∈ RB×Ka×Na .

The separation network is mainly composed of DPRNN [9],
which takes the fused audio-visual feature sequence Vav as in-
put and obtains the prediction mask M̂ ∈ RC×B×Ka×Na .

2.4. Speaker waveform prediction

We combine the predicted mask M̂ to calculate the speech
waveform by the following formula:

ŝai = TransConv1d
(
Vav � M̂i, Cin, Cout

)
, i = 1, ..., C. (12)

where TransConv1d(·) is Decoder, which represents a 1D trans-
posed convolution operation, M̂i ∈ RB×Ka×Na denotes the
prediction mask of the i-th speaker, Cin = Na, Cout = 1 , and
� denotes the element-wise multiplication, i.e. matrix elements
are multiplied correspondingly. ŝai ∈ RB×Lseqa×1 represents
the reconstructed i-th speaker time-domain speech signal.

3. Experiments
3.1. Dataset
In this paper, we use the GRID [25] and VoxCeleb2 (Vox2) [26]
datasets to verify the effectiveness of AVTA. GRID dataset in-
cludes 34 speakers, each speaker has 1000 frontal face record-
ings, each recording has a duration of 3 seconds. Vox2 dataset
contains over 1 million utterances, and all face tracks for each
speaker are extracted from YouTube videos, with 5994 speakers
in training set and 118 speakers in test set. All video sampling
rate in this paper is 25 frames per second (FPS), the audio sam-
pling rate is 8 kHz, where the length of segments Ta, Tv are
2 seconds. We use S3FD [27] to extract mouth feature land-
marks. In order to ensure the randomness of the mixture in
GRID dataset, we randomly order the speakers to mix them.
The training sets for GRID, Vox2 datasets are 7.8 and 248.7
hours, respectively, the validation sets are 1.1 and 5.0 hours re-
spectively, the test sets are 0.3 and 5.0 hours, respectively.

3.2. Experiment configurations
In AVTA, we set the convolutional stride of audio encoder to
half the kernel size, and Cin is set to 1 to accommodate the 1D
time-domain signal. The number of input channels of the visual
encoder is 40, the size of the convolution kernel is 3, and the
stride is 1. The size of the convolution kernel in TABlock is set
to 3, the stride is 1, other parameter settings are shown in Sec-
tion 4. We use 6-layer DPRNN as separation network [9]. In the
training parameters, we set the epoch to 100, the initial learn-
ing rate to 1.5e-4, the batch size to 8, and use the Adam [28]
optimizer. In the process of training, if the performance of 8
consecutive epochs does not improve, we will reduce the learn-
ing rate by half, and when 10 epochs do not show better per-
formance, we manually stop the training. AVTA uses uPIT [29]
to solve the source permutation problem, and uses automatic
mixed-precision to reduce training time on Vox2 dataset. All
experiments are conducted on the NVIDIA RTX 3090 GPU.

4. RESULTS
For all results, MTCA Layer is the number of MTCA network
layers, M is the number of TABlocks in each MTCA, Na is
the feature dimension of audio coded sequences, KS and Stride
represent the size and stride of the 1D convolution kernel in
the audio encoder, respectively, Ka is the coded output se-
quences length of the audio encoder. SI-SNRi and SDRi [8,30]
are used to evaluate separation performance, and their units are
dB. MACs represents multiply-accumulate operations. Training
time and GPU memory are from model evaluation results under
a batch size of 8, and their units are ms and GB respectively.
Param represents the model size.

4.1. Optimize network parameters
In Table 1, we use the GRID dataset to get 2-speaker mixture
to evaluate the effect of different network parameters on the
speech separation performance, where KS is set to 40.

Table 1: Effect of different configurations in AVTA.

M
MTCA
Layer Na SI-SNRi SDRi

MACs
(G/s)

Training
Time

GPU
Memory Param

2 2 128 12.73 13.90 2.54 125 7.49 1.8M
4 2 128 12.88 14.08 3.06 163 9.90 2.5M
8 2 128 13.36 14.56 4.11 231 14.78 3.8M
2 4 128 12.92 14.13 3.06 165 9.92 2.5M
2 8 128 13.39 14.62 4.11 235 14.77 3.8M
4 4 128 13.41 14.63 4.11 229 14.63 3.8M
4 8 128 13.62 14.82 6.21 323 24.28 6.5M
8 4 128 13.53 14.74 6.21 323 24.22 6.5M
4 4 256 14.51 15.72 11.09 280 16.67 12.6M

We find that increasing the MTCA Layer, or increasing
TABlocks M , can improve the separation performance of the
network. However, when the M and MTCA layer is increased
to 4, 8 or 8, 4, their performance improvement is reduced. The
potential reason is that under the current configuration, the net-
work temporal receptive field reachs the limit of the speech time
sequences, resulting in limited performance. When feature di-
mension Na increases, the separation performance of the model
will be improved, but it will lead to a sharp increase in training
time, GPU memory, model complexity and size. In summary,
we choose the configuration where M is 4, MTCA layer is 4,
and Na is 128 to better balance model training cost and separa-
tion performance.
Table 2: Performance comparison of different network struc-
tures modeling of AVTA on GRID dataset.

Method KS Stride Ka SI-SNRi SDRi

AVTA 40 20 799 13.41 14.63
AVTA-32 32 16 999 14.09 15.31
AVTA-CatLiner 40 20 799 12.31 13.52
AVTA-Add 40 20 799 12.27 13.48
AVTA-NoCross 40 20 799 13.25 14.44
AVTA-NoDS 40 20 799 12.39 13.58
AVTA-NoVisual 40 20 799 13.27 14.47

Table 2 compares the separation performance of different
network structures modeling of AVTA. In the table, AVTA is
the method proposed in this paper, the fusion network of AVTA-
CatLiner is a traditional feature splicing and linear mapping
structure. The fusion network of AVTA-Add is a simple struc-
ture of adding audio and visual features, AVTA-NoCross re-
moves the audio-visual cross-attention layer, AVTA-NoDS re-
moves the convolutional network in MTCA, AVTA-NoVisual
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Table 3: Training cost and model complexity evaluation on
GRID dataset.

Method KS Ka
MACs
(G/s)

Training
Time

GPU
Memory

Param

Conv-TasNet [8] 16 1999 9.96 210 10.11 5.1M
Conv-TasNet1 10 3199 15.94 306 14.93 5.1M
DPRNN [9] 2 15999 84.89 500 28.20 2.6M
AVTA 40 799 4.11 229 14.63 3.8M
AVTA-32 32 999 5.14 292 20.50 3.8M
AVTA-CatLiner 40 799 2.03 104 5.07 1.2M
AVTA-Add 40 799 2.03 105 5.05 1.2M
AVTA-NoCross 40 799 3.90 216 13.63 3.6M
AVTA-NoDS 40 799 3.48 197 13.03 3.0M
AVTA-NoVisual 40 799 4.01 219 14.19 3.7M

removes the visual part of the network. We find that fusion
network of AVTA can improve the separation performance bet-
ter than other fusion methods. Compared with AVTA-NoCross,
AVTA adds audio-visual cross-correlation information before
fusion, which helps separation. The AVTA-NoVisual removes
visual information from the AVTA network, leading to a drop
in separation performance, it illustrates the effectiveness of vi-
sual information in audio-visual separation network of AVTA.
Combining with Table 3, we find that all AVTA with differ-
ent network structures are efficient enough, and the separation
performance of AVTA is better. In addition, AVTA-32 sets a
smaller KS. Obviously, its coded sequences Ka is longer, and
its performance is improved, but longer coded sequences di-
rectly leads to a sharp increase in the complexity and training
cost of the model. In order to adjust such an imbalance, we set
AVTA audio convolution kernel size KS to 40.

4.2. Visualization

Figure 2: We use t-SNE to reduce the dimensionality of the en-
coder output and fused features respectively, and visualize the
spatial distribution. We selected a total of 20 random speakers
in the Vox2 test set, including 10 males and 10 females.

In visualization, Figure 2(a), 2(b) represent the encoder out-
put features, Figure 2(c), 2(d) represent the audio-visual fusion
output features, in Figure 2(a), 2(c), different colors (or speaker
id) correspond to different speakers. In Figure 2(b), 2(d), dif-
ferent colors (or speaker id) correspond to different genders of
speakers. We find that the clustering trend is more obvious in
Figure 2(c), 2(d) compared to Figure 2(a), 2(b). The underlying
reason is that through the process of feature sequence learning

and fusion, the audio and visual information is correlated with
each other, and the fused features of the same speaker and the
same gender are clustered in space. Therefore, AVTA sequence
learning and fusion network facilitates the separation process.

4.3. Method comparison

Table 4: Performance comparison of different methods under
GRID and Vox2 datasets.

Dataset Method KS Ka SI-SNRi SDRi

GRID

Conv-TasNet [8] 16 1999 12.25 13.45
Conv-TasNet1 10 3199 12.53 13.73
DPRNN [9] 2 15999 13.38 14.59
AVTA 40 799 13.41 14.63

Vox2
Conv-TasNet [8] 16 1999 10.74 11.59
Conv-TasNet1 10 3199 10.97 11.83
DPRNN [9] 2 15999 12.10 12.95
AVTA 40 799 12.15 13.01

In Tables 3 and 4, we find that the baseline methods Conv-
TasNet and DPRNN [8, 9] can improve performance by set-
ting smaller audio encoder convolution kernels, but coded se-
quence will also become longer, leading to an increase in model
complexity and training cost. Under the optimal configuration
of original paper [8, 9], the model size of DPRNN is slightly
smaller than AVTA, but MACs are about 20 times of AVTA,
training time and GPU memory are about 2 times of AVTA,
the separation performance is slightly lower than AVTA, and
the length of the coded sequence has already increased to the
limit. Although Conv-TasNet has slightly less training time and
GPU memory, its separation performance, MACs, and model
size are far worse than AVTA. Conv-TasNet1 tries to reduce KS
to improve performance, but at this time the MACs, training
time and GPU memory, separation performance and model size
are all worse than AVTA, continuing to reduce KS will only
further increase training cost and computational complexity, re-
sulting in a more unbalanced model. To summarize, AVTA
optimizes fusion network, reduces length of coded sequences,
training cost, and achieves competitive separation performance
compared to the baseline methods. In addition, AVTA achieves
a better trade-off in model computational complexity, training
cost and separation performance.

5. Conclusion
In this paper, we design a MTCA network for time sequences,
build an audio-visual feature sequence learning and fusion net-
work based on MTCA, and finally design a novel audio-visual
speech separation framework AVTA. In this framework, we uti-
lize multi-layer MTCA to model the contextual information, au-
dio and visual cross-modal relationships to fuse audio-visual
features and separate speech of speakers. Finally, we conduct
comparative experiments on challenging datasets, the results
show that AVTA achieves excellent separation performance on
2 datasets, and the model has a better trade-off between training
cost and separation performance. For future works, we will con-
tinue to focus on the cross-modal learning and modeling process
of multimodal features, design more efficient separation mod-
els, and further optimize the network structure.
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