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Abstract
How to develop lightweight systems customized for mobile de-
vices is an urgent and intriguing topic for speaker verification.
In this paper, we investigate extremely low bit quantization for
small-footprint speaker verification. Specifically, two differ-
ent binary quantization schemes are proposed, namely static
and adaptive quantizer. By applying them to the pre-trained
full-precision ResNet, we successfully obtain binarized vari-
ants named as b-vector with a model size of under 1MB mem-
ory. Experiments on Voxceleb dataset illustrate that compared
with the previous best small-footprint system, our best b-vector
system achieves 38%, 36% and 30% relative improvements
on Vox1-O, E and H respectively, while maintaining almost
identical model size. In addition, the analysis of the binarized
weight histograms reveals that adaptive quantization scheme,
when compared to the static method, can better match the real-
valued distribution, and hence presents more effective represen-
tation ability.
Index Terms: speaker verification, mobile devices, neural net-
work quantization, b-vector

1. Introduction
Speaker verification (SV) involves determining if enrollment
and testing utterances are spoken by the same individual. The
paradigm of SV systems undergoes the shift from the conven-
tional i-vector [1] along with probabilistic linear discriminant
analysis (PLDA) [2] towards the use of deep learning tech-
niques for speaker embedding learning [3, 4, 5]. Recently, the
performance of SV systems has been significantly improved
with the utilization of much deeper and larger neural networks.
For example, [6] proposes the depth-first version of ResNet and
largely increases the depth of network to 233. Plus, [7] further
pushes the depth of ResNet to 293 and obtains impressive per-
formance gains. Although promising results have been achieved
by large models, they generally consume substantial storage and
computation resources, impeding the deployment on mobile de-
vices. It is a challenging and demanding task of developing
lightweight speaker verification systems that are customized for
mobile devices.

In previous studies, researchers have explored several ap-
proaches for small-footprint speaker verification, including
knowledge distillation [8, 9] and efficient architecture de-
signs [10, 11, 12]. Knowledge distillation [13] is a commonly-
used compression method which transfers knowledge from
teacher networks to student ones. Despite the possibility of en-
hancing the performance of student networks without enlarging
their model size, the deployment of these networks onto mobile
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devices still remains challenging due to the considerable num-
ber of parameters involved. On the other hand, many efforts
have been made to manually devise more efficient calculation
operators and network architectures. To reduce computational
costs, researchers focus on leveraging lightweight convolution
operations to substitute the computationally-intensive ones and
introducing more efficient architectures tailored to embedded
use cases. Although parameter number and computational com-
plexity have significantly decreased, severe performance degra-
dation can occur, which can barely meet the requirements of
real-life SV applications.

In this paper, we investigate how to strike a better bal-
ance between performance and model size for small-footprint
speaker verification. Neural network quantization is a com-
pression technique employed to represent a 32-bit floating-point
numbers with fewer bit width. The quantization of network
weights can yield models with a smaller memory footprint.
Specifically, we propose two distinct extremely low bit quan-
tization schemes for SV systems, namely static and adaptive bi-
nary quantizer. Through the process of quantizing full-precision
weights into 1-bit values, we successfully obtain a binarized
variant of the pre-trained ResNet with a model size of less
than 1MB. The experimental results on Voxceleb show that our
best binarized model outperforms the previous state-of-the-art
lightweight system, achieving significant relative improvements
of 38%, 36% and 30% on Vox1-O, E, and H respectively,
while maintaining nearly identical model size. Furthermore, the
analysis of the binarized weight histograms indicates that com-
pared to the static method, adaptive quantization scheme can
better align with the distribution of real-valued weights, thereby
demonstrating superior representation capability.

2. Related Work

2.1. Small-footprint Speaker Verification

In recent years, small-footprint speaker verification has been
an important and active research area. [8] proposes label-
level and embedding-level distillation for small-footprint deep
speaker embedding learning. [9] introduces a self-knowledge
distillation framework to utilize enhanced features as teacher.
In addition, [10] adopts QuartzNet [14] architecture with
lightweight time channel separable 1-dimensional convolution
(TCSConv1d) module. [11] develops a lite version of ECAPA-
TDNN by squeezing feature mapping sizes and employing sep-
arable convolution. [12] presents a novel module called chan-
nel split time-channel-time separable 1-dimensional convolu-
tion (CS-CTCSConv1d) to enhance the performance of small-
footprint SV systems.

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

1973 10.21437/Interspeech.2023-800



2.2. Neural Network Quantization

Neural network quantization is a widely-used compression
method to represent full-precision numbers with fewer bit
width. It has been extensively explored in various deep learn-
ing fields, including computer vision [15, 16, 17, 18], natu-
ral language processing (NLP) [19, 20] and speech recogni-
tion [21, 22]. [15] proposes k-means clustering based train-
able quantization for image classification. [16] presents binary
weight networks for challenging visual tasks. [17] introduces
a novel non-uniform quantization scheme. [18] designs mixed-
precision quantization strategy to assign different bit numbers
for various layers. For NLP tasks, [19, 20] aim to quantize
the large pre-trained language models to speed up the inference
process. In addition, [21, 22] show that impressive compres-
sion ratio can be achieved for speech tasks without performance
degradation.

3. Proposed Method
In this section, we first introduce the basic concepts of neural
network quantization. Then, two distinct binary quantizers, the
extreme case of quantization schemes, are proposed to quantize
the full-precision weights of pre-trained ResNet system into 1-
bit values for speaker verification based on quantization-aware
training.

3.1. Preliminaries

In general, neural network quantization involves two opera-
tions: quantize and dequantize. In recent years, to bridge the
non-negligible performance gap between full-precision mod-
els and their quantized counterparts, quantization-aware train-
ing [23] are introduced to minimize the quantization error in
the training process.

quantize operation: This step aims to project real-valued
numbers to low-precision integer values. For n-bit quantization,
the integer set q is generally predefined as follows:

q ∈
{
0,±1,±2, . . . ,±(2n−1 − 1)

}
(1)

The quantize operation can be achieved by round function.
dequantize operation: This operation is an affine mapping

of integers to real-valued numbers. The specific calculation can
be presented as follows:

Q = α× q ∈
{
0,±α, . . . ,±α× (2n−1 − 1)

}
(2)

where α represents the learnable full-precision scaling factor.
For a neural network, we can build a quantization integer

set and the corresponding scaling factor for each of its layers.

3.2. Static Quantization

For static 1-bit quantization, the binary values are restricted to
a fixed integer set, i.e. {−1,+1} for all layers of a neural net-
work, as shown in Figure 2 (left). Despite its simplicity, this
quantization strategy ignores the fact that the weight distribu-
tions in different neural network layers are diverse. In addi-
tion, there exists a significant mismatch in magnitude between
real-valued and the quantized weights. For example, in the pre-
trained ResNet34 speaker verification system, the majority of
weights reside in 10−3 ∼ 10−2 magnitude. However, the quan-
tized weights are generally spread within the interval of [−1, 1].
This phenomenon can incur substantial quantization error. In-
spired by [24], we propose entropy preserving weight regular-
ization to enhance the performance of binarized network.
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Figure 1: Pre-trained weight distributions of the first and last
convolution layers in ResNet34 speaker verification system.

From the view of information theory, a distribution with
higher entropy can preserve more information. Therefore, we
introduce a weight regularizer which aims to preserve maximal
entropy and minimize information loss in quantized weights.
Theoretical analysis indicates that the maximum value of in-
formation entropy in quantized weights can be achieved when
the real-valued weights are quantized into various quantiza-
tion levels in equal proportions. Empirically, the corresponding
quantized weights exhibit an approximately uniform distribu-
tion within binary integer set {−1,+1} when the real-valued
weights are regularized using the following equation:

W r′ =
|W r|

∥W r∥l1
W r (3)

where W r is the real-valued weight matrix. |W r| denotes the
number of entries in the matrix. ∥W r∥l1 stands for the L1 norm
of the matrix.

Then, the regularized real-valued weight W r′ are bina-
rized through the following quantize and dequantize operation
as Eq.4 and Eq.5 show.

q = round((clip(wr′,−1, 1)+1)×1

2
)×2−1 ∈ {−1, 1} (4)

Q = α× q (5)

where clip is the function to clamp values between -1 and 1.
round is the function to map values to the nearest integer. α is
the scaling factor.

3.3. Adaptive Quantization

Previous studies [15, 17] have demonstrated that weights in
neural networks generally adhere to a bell-shaped distribution.
However, our empirical findings indicate that the shape of this
distribution varies across different layers of a neural network.
As Figure 1 shows, weight distribution in shallow layer exhibit a
wider range and larger variance, while that in deep layer is typi-
cally denser and narrower with the majority of weights centered
around 0. Therefore, using a fixed integer set in static quanti-
zation limits the ability to provide binary diversity for various
weight distributions, which ultimately constrains the represen-
tation capacity of the quantized network. In this section, we
propose an adaptive quantization scheme that can dynamically
determine the optimal binary set for each layer to achieve better
alignment with the real-valued weight distribution.
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Figure 2: The overview of static and adaptive binary quantization. Static quantization (left) map the real-valued weights into a
fixed integer set q ∈ {−1,+1} for all layers. In contrast, adaptive quantization (right) can dynamically determine the binary set
Q ∈ {β − α, β + α} for each layer to better match the real-valued weight distribution.

Different from the static quantization where the binary inte-
ger set is fixed as {−1,+1}, we introduce two adaptive param-
eters α and β to better align with the distributions of real-valued
weights in each layer, as Figure 2 (right) displays. The binarized
weight can be obtained as follows:

Q =

{
β − α, wr < β

β + α, wr > β
(6)

where β is the center of binarized weights. α is the distance to
the center. In this case, the binary set becomes {β − α, β + α}.

In addition, Kullback-Leibler divergence (KLD) is adopted
to measure the distribution similarity between binarized and
real-valued weights as follows:

DKL(Pr ∥ Pb) =

∫
Pr(x) log

Pr(x)

Pb(x)
dx (7)

where the Pr(x) and Pb(x) denote the probability distribution
of real-valued and binarized weights respectively.

Given a real-valued weight matrix W r , we firstly align the
center of binary value β to the mean of the real-valued weight
distribution. Therefore, β can be obtained via:

β =
1

c× k × k

c−1∑

m=0

k−1∑

j=0

k−1∑

i=0

W r
m,j,i (8)

where c and k represent the channel number and kernel size re-
spectively. m, j and i are the index to iterate through the chan-
nel number c, kernel size1 k and kernel size2 k respectively.

As inferred in 3.2, we assume that the binarized weights
conform to a uniform distribution, which means Pb(β − α) =
Pb(β + α) = 0.5. For real-valued weights, the distribution is
roughly a bell-shaped curve, which is widely believed to obey
Gaussian distribution. To minimize the KL distance, we em-
pirically observe that α should be on the position of standard
deviation of W r . Finally, α can be estimated via:

α =
∥W r − β∥2√
c× k × k

(9)

In the proposed adaptive quantization scheme, α and β can
be dynamically updated along with the real-valued weights dur-
ing the training process for each network layer.

4. Experimental Setup
4.1. Datasets

We conduct experiments on Voxceleb1&2 [25, 26] datasets, us-
ing the development set of Voxceleb2 as the training data and
Voxceleb1 as the testing data. Performance is evaluated on the
three official trials: Vox1-O, Vox1-E and Vox1-H. Plus, three
data augmentation techniques are employed to enhance the di-
versity of training data, including online data augmentation [27]
with MUSAN [28] and RIR dataset [29], specaugment [30],
speed perturb [31] with 0.9 and 1.1 times speed changes.

4.2. Training Strategies

Our training process consists of two stages. The first stage aims
to obtain a full-precision speaker verification system. Then, we
apply the proposed 1-bit quantization schemes to the pre-trained
network, yielding the corresponding binarized models.

stage 1: In the experiments, we adopt ResNet34 as the
speaker embedding extraction model. Firstly, a ResNet34-based
SV system is trained in full precision. For training data, a 200-
frame segment is randomly chunked from each utterance. The
input features are 80-dimensional Fbank with a window length
of 25ms and a shift of 10ms. AAM-softmax [32] with a margin
of 0.2 and a scale of 32 is employed as the loss function. The
optimizer is SGD with momentum of 0.9 and weight decay of
1e-4. The extracted speaker embedding is 256-dimension.

stage 2: Subsequently, the pre-trained ResNet34 full-
precision model is re-loaded and fine-tuned for 40 epochs us-
ing the proposed 1-bit quantization schemes. During training,
online data augmentation and spec-augment are discarded. The
remaining settings are kept the same in stage 1.

4.3. Evaluation Metrics

Cosine distance is adopted to measure the embedding similar-
ity. Then, we normalize the resulting scores using adaptive
score normalization (AS-Norm) [33] with an imposter cohort
size of 600. Performance is evaluated in terms of the equal error
rate (EER) and the minimum detection cost function (MinDCF)
with the settings of Ptarget = 0.01 and CFA = CMiss = 1.
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Table 1: EER and MinDCF results of previous small-footprint systems and our proposed b-vector on the Voxceleb1 dataset.

System Proceeding Model Size Voxceleb-O Voxceleb-E Voxceleb-H

EER(%) MinDCF EER(%) MinDCF EER(%) MinDCF

ECAPA-TDNNLite [11] ICASSP’22 1.27MB 3.07 0.296 3.00 0.318 5.20 0.436
Julien et al. [10] ICASSP’21 0.95MB 2.91 0.284 3.04 0.292 4.79 0.396
CS-CTCSConv1d [12] INTERSPEECH’22 0.96MB 2.77 0.280 2.83 0.282 4.49 0.383

ResNet34 (full-precision) – 26.7MB 0.89 0.098 1.01 0.121 1.85 0.184

b-vector (static) Ours 0.97MB 1.90 0.212 1.99 0.215 3.40 0.298
b-vector (adaptive) 0.97MB 1.72 0.200 1.81 0.197 3.14 0.278

5. Results and Analysis
5.1. The Performance of b-vector

The performance and model size measured in MegaBytes (MB)
of recent small-footprint SV systems and our proposed bina-
rized models are presented in Table 1.

As stated in section 4.2, we firstly pre-train a ResNet34-
based system in full precision. Although the full-precision
model demonstrates promising performance, its practical de-
ployment on edge devices is impeded by prohibitive memory
requirements. By applying the proposed static and adaptive 1-
bit quantization schemes, two different binarized models are ob-
tained. Specifically, we name the embedding extracted from the
resulting quantized models as b-vector. Form Table 1, it can be
observed that the model size is effectively reduced to less than
1MB, resulting in a significant 27x compression ratio.

Regarding model performance, it is evident that b-vector
(adaptive) achieves much better results than b-vector (static),
indicating that adaptive quantization scheme exhibits superior
speaker representation capability. Compared to recently pub-
lished small-footprint systems, both static and adaptive b-vector
systems achieve a new state-of-the-art performance with simi-
lar model size. Specifically, Julien et al. [10] present a vari-
ant of QuartzNet customized for embedded systems. Further-
more, CS-CTCSConv1D [12] proposes several architectural en-
hancements to Julien et al.’s model, resulting in the best re-
ported performance to date for small-footprint speaker verifi-
cation. By comparison, our best system b-vector (adaptive)
obtains an average relative improvement in EER by 35% and
in MinDCF by 29% while maintaining nearly identical model
size. Additionally, our proposed b-vector systems outperform
ECAPA-TDNNLite by a significant margin with 24% fewer
memory costs. The above analysis illustrates that b-vector sys-
tems achieve a much better trade-off on performance and model
size in the context of small-footprint speaker verification.

5.2. Weight Distribution Analysis

In this section, we provide an analysis of the histograms of bina-
rized weights for both static and adaptive quantization schemes.
As depicted in Figure 3, the distributions of pre-trained real-
valued weights exhibit a significant distinction between the first
and last convolution layers. Static quantization employs a fixed
integer set, resulting in highly similar binarized outcomes for
the first and last convolution layers (0.07 vs. 0.06). This im-
pedes its ability to match the distribution of real-valued weights
accurately. For example, most of the weights are concen-
trated within the range [−0.05, 0.05] in the last layer. Nonethe-
less, static quantization generates two binarized weights ±0.06
which can incur significant quantization error. In contrast, adap-
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Figure 3: The distributions of pre-trained real-valued weights
and binarized weights in the first and last convolution layers.

tive quantization demonstrates superior representation capabil-
ities owing to its ability to adaptively determine the binary set
based on the distribution of real-valued weights. For instance, in
the first layer, where the distribution is wider, adaptive quantiza-
tion maps the weights to ±0.05. On the other hand, it produces
two binarized weights of −0.02 and 0.02 in the last layer due to
a denser and narrower distribution. This exemplifies the ability
of the adaptive scheme to better align with the distribution of
real-valued weights, leading to enhanced performance.

6. Conclusions
In this paper, we explore extremely low bit quantization for
small-footprint speaker verification. Specifically, two distinct
binary quantization schemes, static and adaptive quantizer, are
proposed. By applying them to the pre-trained full-precision
ResNet, we successfully obtain binarized variants named as b-
vector with a model size of less than 1MB memory. Experi-
ments on Voxceleb show that our best b-vector system outper-
forms the previous best small-footprint system by 38%, 36%,
and 30% on Vox1-O, E and H respectively, while maintaining
nearly identical model size. In addition, the binarized weight
histogram indicates adaptive quantization scheme exhibits su-
perior representation capability over the static method.
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