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Abstract 

Currently, tone classification studies mainly focus on training 

classifiers by using intrinsic features of isolated segments, i.e. 

often the syllables. Mostly, the works are not merely in use of 

fundamental frequency (f0) but utilizing more information on 

the spectrograms, MFCCs, or energy to improve model 

accuracy. However, as we know, more challenges on tone 

classification lie on modeling the complex f0 variations from the 

tonal coarticulations and the interactive effects among tonality 

in continuous speech. To tackle down this issue, we first aim at 

in using the sequence of f0 samples in speech utterance only. In 

addition, we propose a transformer based network with an 

extendable BERT input architecture and a joint learning 

technique to consolidate the contour representations of 

consecutive tones. Leveraging or fusing more information 

affected from speech rhythm in utterance, the experiments show 

that the proposed J-ToneNet is very robust for read speech.  

Index Terms: pitch contour, tonal coarticulation, speech 

rhythm, jointly learning, encoder, BERT, Transformer layers 

1. Introduction 

Mandarin Chinese has phonemic tones on full syllables, 

whereby four tones exploited via the changes in the 

fundamental frequency (f0) contour can give lexical contrasts. 

Conventionally, they are transcribed by diacritics added to the 

main vowel, e.g., mā (mother), má (numb), mă (horse) and mà 

(scold). Commonly, the four lexical tones are transliterated into 

numerals in which the tones are perceptually distinguished by 

pitch register and direction, such as high tone /55/, rising tone 

/25/, dipping tone /214/, and falling /51/ in the order of Tone 1 

to Tone 4, respectively. In Figure 1, we introduce the four 

lexical tones and the two tonal variants of Chinese 

monosyllabic words ending with a phonemic segment /i/. The 

dotted blue lines are the speaker-specified log-transformed 

pitch curves and the fitted 2nd-order polynomial lines in the 

voiced part and full syllable region are visualized as the dotted 

cyan and dashed red lines. The dotted cyan curves are nearly 

equivalent to the numeral encoding in perception. As noted in 

[1, 2], another often realized tonal variant for Tone 3 is a low 

falling /21/; whereas, for Tone 2, another dipping variant in 

/323/ would be perceived in spoken Taiwan Mandarin. The 

variation of tonal contours in continuous speech would worsen 

model’s ability to discriminate one tone from the others, 

particularly when a model is built in absence of context [3, 4].  

Tone classification is important not only for speech 

evaluation of Mandarin Chinese in computer-aided (CALL) 

systems of second language (L2) learners [5, 6, 7, 8] but for 

enhancing the recognition accuracy in most state-of-the-art 

Mandarin automatic speech recognition (ASR) systems [9, 10, 

11, 12]. Often in the two-stage-based tone model, the back-end 

classifiers trained on a full segment of syllable, or merely on a 

final, achieve high accuracy with the benefit of deep neural 

networks (DNNs). Some convolutional neural network (CNN)-

based models using spectral features only showed satisfactory 

results on broadcast news speech [13, 14]. Some other Tone 

Networks are constructed more complicatedly to account for 

more context information no matter in using which kind of 

combinations of the feature frontends on Mel-spectrograms, 

FFT spectrograms, MFCC, energy, f0, … etc. For instance, the 

works in [3, 4, 15], modeling in hybrid with the recurrent neural 

layers, attention mechanism and the joint training strategy 

indeed reduce the error rate significantly. However, we notice 

that there are relatively few documented deep learning models 

based on transformers or the BERT-based framework to encode 

the pitch curve information from the f0 value sequences for tone 

classification.  

In this paper, we advocate a new, unified deep learning 

paradigm to enhance tone classification, not only on the isolated 

syllables, short words but extendable for consecutive syllables 

in larger speech chunks. The tonal variants in larger speech 

chunks are diverse and mostly are affected by the contextual 

contour or rhythmic pattern of different speech rate conditions 

[16, 17]. Thus, those two factors should be considered and 

targeted for consolidating tonal representations. When 

designing the network to learn representations for sequential f0 

contour on lexical tones, we explore an utterance-level encoder 

based on bidirectional transformers [18, 19], referred as C-Net. 

Similar to the extendable use of BERT for text summarization 

in [20], C-Net extends BERT by inserting multiple [CLS] 

symbols to learn contour representations of Chinese syllables. 

The exploited technique is to use interval segmentation 

embeddings for distinguishing multiple syllabic tones in 

utterance as BERTSUM adopted for learning sentence 

representation in discourse. Later, the contour representation of 

a Chinese syllable is fused with corresponding rhythmic 

representation learned by another encoding network (R-Net) for 

the task of tone classification. The main research contributions 

of this work are summarized as follow: 

 To the best of our knowledge, we are the first to explore 

only the sequential pitch information and speech rhythm 

in utterance for consolidating tonal contours of Chinese 

syllables in deep neural network. 

 
Figure 1: Six Taiwan Mandarin tonal variants of citation contours 

in normLogF0 on Tone 1 (di /55/, high level for ‘low’), Tone 2 (qi 

/25/, rising for ‘that’ vs. ti /323/, dipping for ‘to mention’), Tone 3 

(di /213/, dipping vs. di /21/, low falling for ‘end’) and Tone 4 (di 

/51/, falling for ‘place’). 
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 We proposed a fully-transformer-based model, J-

ToneNet with a joint learning task on word tone 

prediction and it is proven effective to exploit more 

information from utterance context in terms of word 

inventory. 

 We conduct experiments on two datasets of different 

speaking styles. The results show that our model 

produces significant improvements on continuous speech.  

2. Speech recordings and datasets 

Two speech datasets in different speaking styles were used in 

the conducted experiments. One is the prepared read speech and 

the other is the spontaneous conversational speech. All the 

speech materials were recorded in quiet rooms, sampled at 16 

kHz and processed by the ILAS phone aligner [21] with 

different degree of manual postediting or human verification. 

2.1. Corpus 

2.1.1. FCU-VOICE-100 

A total of 400 students of Feng Chia University were recruited. 

Every 40 speakers (20 males, 20 females) received the same set 

of 250 reading prompts to read. 10 distinct sets of reading 

prompts are designed and chosen from the Sinica Core 

Vocabulary Inventory [22], half of which are frequently used 

words and half of which are sentences indicating the word use. 

Each speaker was asked to read with clarity and naturalness like 

he/she originally intended to say so as the speaker-specific 

variations of the speech rhythm and tone changes in 

coarticulation could be elicited for tone modelling. In the 

conducted experiments, we use a subset of speech materials 

recorded by 100 speakers.  

2.1.2. MCDC-8 

Eight 1-hour spontaneous conversations with talked topics 

freely decided by the 16 paired speakers were used in this work. 

This is a released spoken Chinese resource from the Mandarin 

Conversation Dialog Corpus (MCDC) [23], where the speech 

materials were truncated in 6,060 speaking turns.  

2.2. Datasets, annotation and distribution in length 

In use of the ILAS phone aligner and orthographic 

transcriptions with punctuations, e.g., comma, semicolon in a 

reading prompt, we obtained the force-aligned clausal chunks, 

words and syllables for every speech recording in FCU-

VOICE-100 dataset. Only the “correctly produced and properly 

aligned” ones are included for the conducted tone experiments. 

The notion of a “correctly produced and properly aligned” 

speech recordings is defined as every force-aligned sound on 

word clearly inhibits the comprehension of its lexical meaning 

and tone production. Coming upon any hesitation on the 

perceptual judgement, the annotator discussed with the first 

author until consensus was reached. After manual verifying, 

4,641 out of 25,020 speech recordings were excluded. The 

released MCDC-8 was thoroughly verified on the annotation of 

inter-pausing units (IPUs), words, syllables and the tone 

transcription as it was described in [24].  

The adopted processing units for read speech and 

conversational speech are the utterances on clausal chunks and 

IPUs. In Table 1, we summarize the characteristics of these two 

datasets in terms of the number of utterances, syllables, and 

tone verification. The coverage and distribution of utterances in 

difference syllable length are shown in Figure 2. Half of 

utterances, i.e., nearly 11,000 (46.3%) in FCU-VOICE-100 are 

mono-, di-syllabic words; whereas in MCDC-8, the number is 

only 1,890 (14.1%). In conversational speech, a coverage of 

10% of utterances are long ones over the length of 17 syllables.  

3. Classifier on isolated segments 

The work here on tone classification mainly explores the 

contour representations of four lexical tones by using pitch 

information only. The f0 values estimated from PRAAT pitch 

tracking [25] were log-transformed first and then normalized to 

[0, 1] using the speaker-specific ceiling and floor f0 values 

determined at 0.1% and 99.9% of the range, respectively, here 

abbreviated as normLogF0. 

3.1. Estimated features 

For segment based models stated below, we use a fixed length 

of 20 points resulting from interpolation of sequential f0 

observations. This normLogF0(20) is the first set of estimated 

features for a Chinese syllable. The survey on tonal features for 

a Chinese syllable listed in [26] is extended and provided in 

Table 3. We use this ToneFea(17) as a second expanding set. 

3.2. Segment based models 

3.2.1. Random forest 

The random forest [27] with 16,384 tree predictors is the 

baseline model we use for comparison with the state-of-the-art 

 
Figure 2: Coverage and Distribution of utterances in 

different syllable length. 

53.4% 75.9% 

Table 1: Comparison of the two datasets. 

Corpus #Spkrs #Utt #Syls 
 Tone  

Verifying 

FCU-VOICE-100 100 23,601 125,178  Yes 

MCDC-8 16 13,407 131,003  Yes 

  

Table 3: Estimated features for Tones. 

Fea. Descriptions  

1-3 Coefficients of second order polynomial function  

fitted on the estimated pitch contour (normLogF0). 

4-5 Relative positions of minima and maxima of normLogF0. 

6-11 (amax – bmin), (cmax – bmin), (cmax – amin), (amax – cmax), (amax 

– cmin), (amin – cmin), where a and c is respectively the first 

and the fourth quartile; b is the union of the second and 

third quartiles; and the min-subscript (max-subscript) 

denotes the minimum (maximum) value in that quartile. 

12-17 Corresponding slopes on previously defined regions. 
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neural networks or the more complicated deep neural networks. 

We choose random forest as it is a meta estimator that fits a 

number of weak learners on various subsamples of the dataset 

and is often robust with respect to noise, such as the abnormal 

f0 estimation incurred from current pitch tracking algorithms. 

3.2.2. Feed-Forward Network (FNN) 

A simple network for segment-level (i.e., on aligned isolated 

syllables) tone classification is built with two fully connected 

layers with Gaussian error linear units (GeLUs) [28], which 

were also adopted in BERT’s model for sequence-to-sequence 

tasks. Later, the last hidden layer is used to generate an output 

layer of 512 neurons, which is passed through a softmax layer 

to generate a probability distribution over the four lexical tones.  

3.2.3. 1D-CNN 

The core learning networks of the proposed 1D-CNN are the 

convolution, pooling and the fully connected layers, where the 

activation functions are also the GeLUs. Six convolutional 

layers with a convolutional kernel (filter) size of 4 and a stride 

length of 1 are adopted, and the numbers of filters for every 2 

layers are 128, 256 and 512. Only the second and fourth 

convolutional layers are rightly followed by an average pooling 

layer (kernel size 2). The output of the sixth convolution is then 

passed through two fully connected layers with 512 units, and 

the softmax layer yields 4 outputs, which correspond to 4 

bearing lexical tones.  

4. Encoders and the tone network 

4.1. C-Net: tonal contour abstraction 

BERTSUM [20] is a BERT architecture for text summarization. 

It takes a sequence of multi-sentential inputs and extends BERT 

by inserting multiple [CLS] symbols to learn sentence 

representations. We propose an encoding network, which is 

similar to BERTSUM, to abstract the contours of lexical tones 

from sequential f0 values. As shown in Figure 3, the proposed 

C-Net takes a sequence of multitonal f0 values as input and is in 

use of BERT input architecture to define the functions with 

learnable parameters. These functions are the building blocks 

from which transformers are made [29]. Full architectures 

featuring these building blocks in C-Net are stated below.  

The first block is the Pitch Embedding which directly 

linearly transform 1-d 𝑓0  values to the hidden states of the 

dimensionality as d = 512 where the untracked pitch values of 

unvoiced parts, and the padded values at the end of every 

utterance are zeros. Secondly, as it was chosen in [18], we use 

the sinusoid positional embedding as Positional Embedding to 

mark the pitch ordering. Next, in the Token Embedding, we use 

[VAL], and [NAN] respectively to indicate the estimated and 

the remaining untracked or padding pitch tokens. The inserted 

[CLS] token in front of every syllable or word token is to 

aggregate contour information from the input 𝑓0 values until a 

syllable or word boundary separator token ([SEP]) is met. 

Lastly, similar to the BERTSUM, we also use interval segment 

block (the Segment Embedding) both for syllable and word to 

distinguish the odd tones from the even ones in an utterance 

with two symbols EA and EB. These four embeddings at i-th 

pitch value are summed to a single input pitch vector 𝑥𝑖 and fed 

to a bidirectional Transformer with multi-stacked layers: 

 

        ℎ̃𝑙 = LN(ℎ𝑙−1 +MHAtt(ℎ𝑙−1))  (1) 

ℎ𝑙 = LN(ℎ̃𝑙 + FFN(ℎ̃𝑙))  (2) 
 

where ℎ0 = 𝑥 are the concatenated pitch vectors of matrix ∈
ℝ𝑛×𝑑 ; LN stands for the layer normalization; MHAtt is the 

multi-head attention; and the superscript l indicates the depth of 

the stacked layer (L=4). This way, contextual contour 

representations are learned hierarchically where lower 

Transformer layers focus on adjacent pitches; while higher 

layers, in combination with self-attention, focus more on 

coarticulation effects of tones.  

Of the C-Net encoding network, the final hidden vector 𝑡𝑖 
in T is the vector of the i-th [CLS] symbol from the top layer 

ℎ𝐿. This embedding of tonal contour for i-th syllable is 𝑡𝑖
𝑐, and 

would be fused with its corresponding rhythmic embedding 𝑡𝑖
𝑟. 

4.2. R-Net: auxiliary information from speech rhythm 

We design a similar encoding network to learn the auxiliary 

information from speech rhythm. This proposed R-Net takes 

two sequences as inputs and both are relevant to duration. One 

is the original durations of syllables in utterance; the other one 

is the differences of syllable durations and the mean duration. 

The first used building block in R-Net is the Duration 

 
Figure 3: The proposed Transformer based encoding network for tonal contour (C-Net). 
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Embedding which linearly transform 2-dimensional durational  

inputs to the hidden states of the same dimensionality as C-net, 

i.e., d = 512, by using a fully connected (FC) layer. Another 

building block, the Positional embedding is then added to the 

hidden state before feeding into a two-layered Transformer. The 

architecture of the Transformer is the same as the one depicted 

in (1) and (2). Here, we are in use of 𝑡𝑖
𝑟 to stand for the rhythm 

embedding of i-th syllable in utterance.  

4.3. Joint tone classification network (J-ToneNet) 

In fully constructed Joint tone classification network (J-

ToneNet), we fuse the two embeddgins, 𝑡𝑖
𝑐 and 𝑡𝑖

𝑟 as it is stated 

in (3). These two embeddings are first projected into the same 

hyper space and then concatenated before layer normalization 

being applied.  

𝑡𝑖 = LN((𝑊𝑐𝑡𝑖
𝑐)⨁(𝑊𝑟𝑡𝑖

𝑟))  (3) 
 

where, 𝑡𝑖 ∈ ℝ2𝑑 ,𝑊𝑐 ∈ ℝ𝑑×𝑑 ,𝑊𝑟 ∈ ℝ𝑑×𝑑. 

Next, in order to exploit channel dependencies in output 

feature 𝑡𝑖  as the works in [30], we parameterize the gating 

mechanism by forming a reverse bottleneck [31, 32] with two 

FC layers around the non-linearity, i.e. a dimensionality-

expansion layer with parameters 𝑊1 ∈ ℝ2𝑑×4𝑑, a GeLU (i.e. 𝛿) 

and a dimensionality-reducing layer with parameters 𝑊2 ∈
ℝ4𝑑×2𝑑.  

𝑠 = 𝜎(𝑊2(𝛿(𝑊1𝑡𝑖)))  (4)   
 

In (5), the attention weight 𝑠  is then element-wise 

multiplied to the hidden state 𝑡𝑖. Rightly, the output is passed 

through a linear layer with parameters 𝑊3 ∈ ℝ2𝑑×𝑑  to 

transform the dimensionality back to the original one, d = 512. 

Before feeding it into the classifier as the equation (6) states, an 

additional non-linear (tanh) transformation is applied to make 

output representation 𝑡̃𝑖 more interpretable.  

 

𝑡̃𝑖 = tanh⁡(𝑊3(𝑡𝑖 ⊗ 𝑠))  (5) 

𝑦̂𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑜𝑡̃𝑖 + 𝑏𝑜)  (6) 
 

A forming of ‘compatible context’ or a ‘conflicting context’ 

as it is described in [16] says that the neighboring tone preceded 

or followed has f0 value similar to, or different from the 

register/offset of target tone, like the tone pairs of /55/-/55/ or 

/51/-/55/. With this notion, the loss of the J-ToneNet in (7) 

defining on prediction tone 𝑦̂𝑖  against gold tone label 𝑦𝑖 
considers the cross-entropy both on tones of syllables and tones 

of monosyllabic words and certain disyllabic word tone pairs. 

Much alike in equations of (5) and (6), a word tone classifier is 

built in use of the T vectors indicated in last block of Figure 3. 
 

𝑙𝑜𝑠𝑠 = ⁡𝐶𝐸(𝑦̂𝑠𝑦𝑙 , 𝑦𝑠𝑦𝑙) + 𝐶𝐸(𝑦̂𝑤𝑜𝑟𝑑 , 𝑦𝑤𝑜𝑟𝑑) (7) 

5. Results and concluding remarks 

In the conducted experiments, each dataset was split into 

training, development and test sets in 80%, 10% and 10% of the 

utterances, respectively. The top three segment based models 

on left part of Table 3 reports the tone classification results on 

the isolated syllables where no contextual information out of 

the fully aligned syllable range is used. For read speech, 

appending further with the ToneFea(17) instead of simply using 

the normLogF0(20) always achieves the best result. However, 

when we test spontaneous speech, slightly improvement or 

nearly no gain is obtained in neural models with the appended 

set of ToneFea(17); on the contrary, it is increased with a rate 

of 4.1% in random forest. The overall performance and the tone 

accuracies of consecutive syllables in larger speech chunks 

achieve the best in the proposed J-ToneNet. 

Next, each at a time only one component of the J-ToneNet 

is removed in a reverse constructing sequence. The model 

performance is clearly degraded while making the model not 

jointly train to decide if both monosyllabic words and certain 

word tone pairs are predicted correctly. Further, taking off the 

R-Net, the tone accuracy on long speech chunks over 21 

syllables is worse, especially for read speech. The last line in 

the right part of Table 3 shows that when using only the contour 

encoding network (i.e., C-Net) on isolated syllables, such 

encoding technique seems effective, but largely falls behind of 

the achievement seen in utterance-level context. Generally, the 

results suggest that extending transformers over pitch 

sequences in utterance works quite well and provide evidence 

on that utterance context is crucial for model enhancement. 

Here are the listed concluding remarks: a) Adopting pitch 

information only and leverage it with the rhythmic sequence 

explicitly in a unified deep architecture has proved effective in 

classifying tones of consecutive syllables in utterance. b) 

Further, with a joint learning approach to incorporating more 

information on the use of word tones in spoken utterance 

context, it shows that the model discriminates tones more 

robustly in read speech. c) Currently, the model is still in 

development, and the results are quite preliminary. Enriching 

rhythmic representations of the timing patterns between 

syllables in association with the different degrees of vowel 

merging is our future goal to improve the unsatisfactory results 

for conversational speech. d) As the work in [33], this proposed 

model could be valuable for clinical applications of screening 

children’s speech on tone production. 
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Table 3: Tone accuracy (%) of models. 

 FCU-VOICE-100 MCDC-8  FCU-VOICE-100 MCDC-8 

Models F0 ToneFea F0 ToneFea Component removing Overall 
Utt. Length 

Overall 
Utt. Length 

<=2 3-20 >=21 <=2 3-20 >=21 

Random Forest 52.5 57.2 44.8 48.9 J-ToneNet 91.0 80.0 93.0 94.1 61.7 67.1 61.9 60.7 

FFN 50.5 55.9 43.6 44.9  joint learning 87.7 78.2 89.4 91.2 58.6 63.4 59.7 55.8 

1D-CNN 52.6 56.7 45.4 45.4   joint learn. & R-Net 86.0 78.9 87.4 73.5 58.9 63.8 60.2 55.6 

J-ToneNet 91.0 61.7 only C-Net on SYL 59.0 - 50.6 - 
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