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Abstract
Although high-fidelity speech can be obtained for intralingual
speech synthesis, cross-lingual text-to-speech (CTTS) is still
far from satisfactory as it is difficult to accurately retain the
speaker timbres (i.e. speaker similarity) and eliminate the ac-
cents from their first language (i.e. nativeness). In this paper,
we demonstrated that vector-quantized (VQ) acoustic feature
contains less speaker information than mel-spectrogram. Based
on this finding, we propose a novel dual speaker embedding
TTS (DSE-TTS) framework for CTTS with authentic speak-
ing style. Here, one embedding is fed to the acoustic model
to learn the linguistic speaking style, while the other one is in-
tegrated into the vocoder to mimic the target speaker’s timbre.
Experiments show that by combining both embeddings, DSE-
TTS significantly outperforms the state-of-the-art SANE-TTS
in cross-lingual synthesis, especially in terms of nativeness.
Index Terms: cross-lingual text-to-speech, dual speaker em-
bedding, vector-quantized acoustic feature

1. Introduction
Recent neural text-to-speech (TTS) models [1, 2, 3, 4, 5] have
made great strides in synthesizing speech with high fidelity, rich
prosody and remarkable speaker similarity. Nevertheless, in
multilingual TTS (MTTS) scenarios, cross-lingual synthesis is
still far from satisfactory as it is difficult to accurately retain
the speaker’s timbres and eliminate the accents from their first
language. More specifically, cross-language synthesis is diffi-
cult to acquire nativeness in non-native languages while main-
taining speaker similarity, while nativeness refers to the close-
ness of speech to the native language. Efforts have been made
to mitigate the degradation in cross-lingual performance result-
ing from this entanglement. [6, 7] incorporated adversarial do-
main training, allowing them to transfer distinct voices across
languages. [8] proposed to use mutual information minimiza-
tion to maintain speaker consistency in cross-lingual synthesis.
[9] implemented multi-task learning and joint training with a
speaker classifier to enhance the overall similarity of speakers.
More recently, SANE-TTS [10] presented an end-to-end multi-
lingual TTS model based on VITS [11]. This model employed
a speaker regularization loss to encourage the model to learn
speaker representation independent of its language, ensuring ac-
curate duration predictions in cross-lingual synthesis.

However, these studies typically rely on the mel-
spectrogram as an acoustic feature, which is highly correlated
along both time and frequency axes and contains rich speaker-
dependent information, making it still challenging to disentan-
gle correlated factors. Seeking another acoustic feature that

Kai Yu† is the corresponding author.

contains less speaker identity might be crucial. Recent ad-
vancements in speech-based self-supervised learning (SBSSL)
[12, 13, 14, 15, 16, 17] have enabled some TTS models to
use discrete vector-quantized (VQ) speech representations as an
acoustic feature, replacing the traditional mel-spectrogram for
prediction. SBSSL models take raw waveform as input, which
is only correlated along the time axis. As a result, the quantized
output has a coarser granularity of speech features than the mel-
spectrogram. This results in lower reconstruction difficulties
of VQ features and potentially less speaker-dependent informa-
tion. For example, [18] leverages self-supervised VQ acoustic
features as an alternative to the mel-spectrogram. The VQ fea-
tures are generated by an acoustic model named txt2vec and
then used for waveform reconstruction by a vocoder, vec2wav.
By replacing the mel-spectrogram regression task with a VQ
feature classification task, [18] achieves highly competitive nat-
uralness among publicly available TTS systems.

In this paper, by analysizing the performance of the Multi-
speaker version of [18], we found that VQ acoustic fea-
ture contains little speaker-specific information. Subsequently,
we conducted speaker classification experiment using differ-
ent acoustic features as shown in section 3. Results show
that self-supervised VQ features extracted from wav2vec 2.0
[13] contain much less speaker-specific information than mel-
spectrogram and other candidates. Hence VQ features are easier
to decouple timbre and linguistic information than traditional
mel-spectrogram. Based on this finding, we propose DSE-TTS,
a TTS system with dual speaker embedding for cross-lingual
TTS that enables the system to model linguistic speaking style
and speaker timbre separately. The dual speaker embedding
operates by controlling different speech aspects in the acous-
tic model and vocoder separately in the inference stage. Ex-
periments show that by combining both embeddings, DSE-TTS
outperforms the state-of-the-art SANE-TTS in both intralingual
and cross-lingual synthesis, especially in terms of nativeness.
We will elaborate on the proposed methods and detailed exper-
imental results in later sections.

2. Dual Speaker Embedding TTS
The dual speaker embedding TTS (DSE-TTS) is introduced in
detail in this section, input representations, acoustic model ar-
chitecture, and the proposed dual speaker embedding. The over-
all framework is shown in Figure 1.

2.1. Input representations

Following [6] and [19], the input text is initially normalized and
converted to International Phonetic Alphabet (IPA) phonemes
using the phonemizer [20] toolkit. To facilitate alignment be-
tween the text and speech, we preserve the tones and stresses
of different languages in our input sequences. We also use

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

616 10.21437/Interspeech.2023-363



IPA Phoneme Sequence

Text Encoder

Auxiliary 

Feature

Discrete VQ 

Acoustic Features

VQ Feature 

Predictor

Embedding

Decoder

Variance 

Predictor

Length Regulator 

Embedding Auxiliary
Controller Embedding

Embedding

Training

Conv

Conv

Feature Encoder

Linear

Conv

(Shifted)Auxiliary 

Feature

Discrete VQ 

Acoustic Features

HiFiGAN

Generator

X-vector

Cross-lingual  Synthesis
Training

X-vector

(a) txt2vec (b) vec2wav

Native-Speaker ID

Non-Native-Speaker

Native-Speaker
Speaker IDs

Language IDs

Target Language IDs

Speakers

Native-Speaker ID

Intralingual  Synthesis

Dual Speaker Embedding

Figure 1: The overall architecture of DSE-TTS consists of an acoustic model, txt2vec, and a vocoder, vec2wav. Dual Speaking Em-
bedding enables DSE-TTS to model linguistic characteristics and speaker timbre separately, helping to retain the speaker’s timbre in
synthesized speech and eliminating the accents of their native language in cross-lingual synthesis. Solid lines represent the training
stage, while dashed lines represent the inference stage.

shared punctuation tokens across languages, categorized into
four groups based on pause length, denoted as ‘sp1’, ‘sp2’,
‘sp3’, and ‘sp4’. Additionally, we use ‘sil’ as the starting and
ending token for each sentence. Prior to feeding the input se-
quence to the text encoder in txt2vec, each phoneme (token) is
assigned a 384-dimensional vector using an embedding table.

2.2. Model architecture
2.2.1. Self-supervised VQ features

In this study, we extract VQ acoustic features using a wav2vec
2.0 model with two quantized codebooks, each containing 320
codewords. The wav2vec 2.0 model was pre-trained on 10,000
hours of Mandarin data. It quantizes each input speech into
multiple frames with a 20ms stride, and each frame can be
represented by concatenating two 256-dimensional codewords
from each codebook. All possible index combinations in our
mixed-language dataset are about 28.8k. The objective is to
accurately predict these index pairs in order to construct high-
fidelity speech. For parallel inference, we replace the VQ fea-
ture predictor with a convolutional neural network instead of
LSTM [21] in the original [18]. Furthermore, we predict the in-
dex of each codebook separately instead of their combinations,
resulting in two 320-class classification problems. We choose
wav2vec 2.0 as our VQ feature extractor because it provides
a more robust speech representation with less speaker infor-
mation compared to other VQ features. The rationale for this
choice will be further explained in the experiment section.

2.2.2. Phone-level(PL) auxiliary labelling

Similar to [18], we utilize log pitch, energy, and probability
of voice (POV)[22] as auxiliary features. To begin, we com-
pute and normalize phone-level representations of our mixed-
language dataset. Then, we apply k-means clustering to group
these representations into 128 distinct classes, with the result-

ing clustered index serving as the auxiliary label for PL infor-
mation. We employ the ground truth PL auxiliary labels on one
side for training the multilingual auxiliary controller, while on
the other side, they serve as a condition for subsequent duration
modeling and acoustic feature generation.

2.3. Dual speaker embedding

In previous works on cross-lingual TTS, it is difficult to ac-
curately retain the speaker’s timbres and eliminate the accent
from their first languages, resulting in unnatural synthesized
speech. The main reason is typically rooted in the entangle-
ment between speakers and languages, which is often mani-
fested in the nature of traditional acoustic features like mel-
spectrogram. However, our preliminary experiments found that
self-supervised VQ features contain much less speaker identity
compared to traditional acoustic features. We will show these
results in section 3.3. As a result, in VQ-based TTS methods, it
is unnecessary to use additional techniques for the disentangle-
ment of speaker and language within the acoustic model. This
allows the model to concentrate solely on modeling textual and
linguistic characteristics while the task of controlling speaker
timbre is delegated to the vocoder. Thus, the VQ-based TTS
model naturally learns how to speak different languages in a
native way with the timbre of a non-native speaker.

From this perspective, we develop a dual speaker embed-
ding TTS (DSE-TTS) framework to improve the nativeness
and speaker similarity in cross-lingual TTS scenarios. Two
speaker embeddings are used in the TTS model, where one is
fed into the acoustic model txt2vec and the other for the vocoder
vec2wav. In the training stage, given the text and speech pair of
a native speaker, the two speaker embeddings both correspond
to the same speaker. Then in the synthesis stage, no matter the
intralingual or cross-lingual case, the speaker embedding of a
native speaker corresponding to the input language is chosen as
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the input speaker embedding to txt2vec uses a native speaker in
the language of input text. In contrast, the speaker embedding
in vec2wav is set as the target speaker. Hence, in the cross-
lingual case, it means that we choose a native speaker’s embed-
ding in txt2vec representing linguistic speaking style and the
target speaker’s embedding in vec2wav that controls the timbre.
In this way, language-specific speaking style and speaker timbre
are naturally separated by dual embeddings.

The diagram of DSE-TTS is shown in Figure 1. For the
acoustic model txt2vec, we take speaker and language IDs as
input. Speaker IDs are embedded in 256-dimensional vec-
tors, which are then projected and added to the encoder out-
put. We handle language IDs similarly to support various lan-
guages, which are embedded in 128-dimensional vectors. These
two embeddings are used to learn the linguistic characteristics
of different languages. For vec2wav, we use X-vector [23]
as the speaker embedding to control the timbre, which is ex-
tracted from a pre-trained speaker recognition model. Besides,
to bring the timbre closer to the target speaker while doing
cross-lingual synthesis, we shift the distribution of the native
speaker’s pitches predicted by txt2vec to match the pitch of the
target speaker. It can be formulated as follows:

Ptgt = σtgt
Pntv − µntv

σntv
+ µtgt (1)

where the subscripts “tgt” and “ntv” stands for target and native
speaker, respectively. µ and σ are the mean and standard devia-
tion of the target or native speaker’s pitch values in the training
set. We perform this pitch shift before the auxiliary features are
sent to vec2wav for synthesis.

3. Experiments and results
3.1. Dataset

Our dataset comprises four languages: Mandarin (ZH), English
(EN), Spanish (ES), and German (DE). We obtained the data
for German and Spanish from M AILABS [24], while the data
for English and Mandarin were sourced from LibriTTS [25] and
Aishell3 [26], respectively. In reality, it may be hard for some
languages to collect enough data. To imitate this scenario and
test our method’s language adaptive ability, we randomly se-
lected a few hours of data from German and Spanish as low-
resource languages. The total duration and number of speakers
involved are listed in Table 1. During training, we resampled all
speech to 24 kHz and used 5% of the utterances for the valida-
tion and test set. To extract ground truth phoneme duration, we
employed MFA1, which performs forced alignment using Kaldi
[27].

Table 1: Details of the training dataset.

Language EN ZH DE ES

Hours 74 60 6 6
#Speakers 228 142 3 3

3.2. Experimental setup

We trained our models for 200 epochs on the txt2vec and 100
epochs on the vec2wav, using batch sizes of 16 and 8, respec-
tively. The training process was performed separately on an

1https://github.com/MontrealCorpusTools/
Montreal-Forced-Aligner

NVIDIA 2080Ti GPU. We utilized a publicly available pre-
trained wav2vec 2.0 model 2 for VQ acoustic feature extrac-
tion. Additionally, we adopted the data balance strategy pro-
posed by [28], with the scaling factor set to 0.2. To evaluate the
performance of our model, we used the recent MTTS model,
SANE-TTS, as our baseline and replicated it using the official
VITS3 implementation. We trained the SANE-TTS model for
200 epochs using a batch size of 16 while keeping all other pa-
rameters consistent with those specified in the original paper.

3.3. Speaker-independent VQ acoustic feature

To investigate the relationship between different acoustic fea-
tures and speakers, we first construct a speaker classification
model to evaluate the classification accuracy of various features.
We compared the mel-spectrogram, a widely used acoustic fea-
ture in TTS models, with four distinct VQ features extracted
from open-sourced pre-trained models, including vq-wav2vec
[12], wav2vec 2.0 [13], XLSR-53 [14] and Encodec [29]. Our
classification model used an X-vector architecture augmented
with two linear layers to predict speaker identities. We trained
the model on the LibriTTS training set, which includes more
than 2000 speakers. After training the model for 80 epochs, we
analyze the classification accuracy of speaker identities on the
test set. As shown in Figure 2, the mel-spectrogram contains
sufficient information about the speaker’s identity, resulting in
a high accuracy rate for speaker classification. In contrast, the
VQ features have significantly less speaker information, leading
to a lower accuracy rate than the mel-spectrogram. Based on
our experimental results, we chose wav2vec 2.0 as our acoustic
feature because it has a relatively lower speaker identification
performance, indicating that it contains less speaker-dependent
information.

Figure 2: Speaker classification accuracy with different acous-
tic features.

3.4. Speech Synthesis Evaluation

We utilized subjective and objective measures to evaluate the
quality of intralingual and cross-lingual synthesis. Our subjec-
tive measures include nativeness mean opinion score (NMOS)
and similarity MOS (SMOS). NMOS is used to evaluate the na-
tiveness of synthetic speech, while SMOS is used to assess the
extent of speaker similarity. A higher NMOS score indicates
that the synthesized speech is closer to the native language.
MOS ratings were based on a 1-5 scale with 0.5-point incre-
ments and 95% confidence intervals. We synthesized 30 speech
samples for each language using random texts from the test set
and recruited multiple raters for evaluation. The raters included

2https://github.com/TencentGameMate/chinese_
speech_pretrain

3https://github.com/jaywalnut310/vits
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Table 2: WER, Speaker Similarity, Nativeness MOS and Similarity MOS results in cross-lingual synthesis, where SECS means Speaker
Embedding Cosine Similarity and ”w/o DSE” means without Dual Speaker Embedding (a.k.a., using the same target speaker’s embed-
ding in both the txt2vec and vec2wav modules during inference).

Language Model EN Speaker ZH Speaker

WER ↓ SECS ↑ NMOS ↑ SMOS ↑ WER ↓ SECS ↑ NMOS ↑ SMOS ↑

DE
SANE-TTS 29.6 0.44 3.77± 0.07 4.36± 0.08 29.6 0.57 3.79± 0.06 4.54± 0.08
Ours w/o DSE 16.1 0.50 4.03± 0.06 4.45± 0.08 22.6 0.60 3.93± 0.05 4.60± 0.07
Ours (DSE-TTS) 14.9 0.46 4.19± 0.07 4.40± 0.06 15.5 0.59 4.11± 0.06 4.54± 0.07

ES
SANE-TTS 17.9 0.46 4.03± 0.06 4.54± 0.07 21.4 0.57 3.93± 0.06 4.53± 0.08
Ours w/o DSE 17.4 0.49 4.19± 0.05 4.59± 0.08 18.3 0.58 3.97± 0.06 4.57± 0.08
Ours (DSE-TTS) 13.5 0.50 4.47± 0.06 4.50± 0.07 16.0 0.55 4.26± 0.07 4.52± 0.07

15 bilingual Mandarin and English speakers to assess the qual-
ity of English and Mandarin speech and 15 trilingual Mandarin-
English-German and English-Mandarin-Spanish speakers to
evaluate the synthesized speech in German and Spanish, re-
spectively. For the objective metrics, we computed word error
rate (WER), character error rate (CER), and speaker embedding
cosine similarity (SECS) between the synthesized speech and
the ground-truth speech. WER was used for Spanish, German,
and English, while CER was used for Mandarin. We used pre-
trained ASR models, Whisper[30] for Spanish, German, and
English, and a transformer[31] ASR model for Mandarin. For
speaker similarity, we used an independently trained ResNet-
based r-vector speaker verification model [32] and computed
cosine similarity scores between 0 and 1. A larger score indi-
cates better speaker similarity. To compare our proposed and
baseline models, we synthesized 100 speech samples per lan-
guage by randomly selecting sentences from the test set. Audio
samples are available online4.

Table 3: Nativeness MOS and ASR results in intralingual syn-
thesis, while WER is for German (DE), Spanish (ES), and En-
glish (EN), and CER is for Mandarin (ZH).

Language Model NMOS ↑ WER(CER) ↓

DE
Ground truth 4.49± 0.07 6.4
SANE-TTS 4.08± 0.08 16.4
Ours (DSE-TTS) 4.40± 0.07 7.8

ES
Ground truth 4.69± 0.06 4.1
SANE-TTS 4.30± 0.07 9.2
Ours (DSE-TTS) 4.56± 0.05 8.8

EN
Ground truth 4.54± 0.05 4.2
SANE-TTS 4.18± 0.06 5.6
Ours (DSE-TTS) 4.36± 0.06 5.3

ZH
Ground truth 4.46± 0.06 6.8
SANE-TTS 3.79± 0.07 10.6
Ours (DSE-TTS) 4.39± 0.06 7.9

3.4.1. Intralingual synthesis
Table 3 shows the average NMOS and WER (CER) in in-
tralingual evaluation. It is evident that DSE-TTS has achieved
NMOS scores close to the ground truth and outperforms the
baseline model on all metrics and across all languages. Specifi-
cally, DSE-TTS has attained an NMOS score above 4.3 for each
language and achieved a lower WER (CER).

3.4.2. Cross-lingual synthesis
Table 2 presents the evaluation results of our cross-lingual syn-
thesis. We observe that the results were consistent with those

4https://goarsenal.github.io/DSE-TTS

obtained in intralingual synthesis, as DSE-TTS outperformed
SANE-TTS in terms of both NMOS and WER scores by a large
margin. Specifically, in NMOS scores, raters preferred DSE-
TTS against baseline by over 0.3 in all the speaker-language
combinations. Moreover, the SMOS and SECS scores demon-
strate that DSE-TTS maintains similar speaker characteristics to
SANE-TTS. These findings suggest that DSE-TTS can synthe-
size high-quality German and Spanish speech in a non-native
speaker’s voice but with greater similarity to that of native
speakers than the baseline model.

3.4.3. Ablation study

We performed an ablation study to investigate the impact of dual
speaker embedding (DSE) on the performance of our model.
The results presented in Table 2 indicate a significant enhance-
ment in the nativeness and decrease in WER of the synthe-
sized speech after the integration of DSE. Our observations
also suggest that the use of DSE resulted in a slight decrease
in the speaker similarity scores in comparison to not using it.
This may be attributed to the fact that different languages have
unique linguistic speaking styles, and non-native speakers may
sound slightly different when speaking a foreign language flu-
ently. This is also evidence that DSE-TTS produces speech in a
native way, though not trained with bilingual speakers.

4. Conclusions

In this paper, we propose DSE-TTS, a cross-lingual TTS model,
which consists of a dual speaker embedding to model linguistic
speaking style and speaker timbre separately. We first showed
by a preliminary study that VQ features have fewer speaker-
dependent features. Leveraging this finding, we improved our
model with a novel dual speaker embedding, resulting in cross-
lingual speech synthesis with high nativeness and a similar
timbre to the target speaker. Our experiments demonstrated
that DSE-TTS outperforms SANE-TTS in both intralingual and
cross-lingual synthesis, particularly in terms of nativeness. We
also verified the effectiveness of dual speaker embedding by an
ablation study. In future work, we will focus on enhancing the
quality of the synthesized speech in cross-lingual scenarios and
expand our model into other languages.
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nocký, L. Burget, L. Lamel, O. Scharenborg, and P. Motlı́cek, Eds.
ISCA, 2021, pp. 2426–2430.

[15] W. Hsu, B. Bolte, Y. H. Tsai, K. Lakhotia, R. Salakhutdinov, and
A. Mohamed, “HuBERT: Self-supervised speech representation
learning by masked prediction of hidden units,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol. 29, pp.
3451–3460, 2021.

[16] A. Baevski, W. Hsu, Q. Xu, A. Babu, J. Gu, and M. Auli,
“data2vec: A general framework for self-supervised learning
in speech, vision and language,” in Proc. International Confer-
ence on Machine Learning (ICML), ser. Proceedings of Machine
Learning Research, vol. 162. PMLR, 2022, pp. 1298–1312.

[17] H. Zhou, A. Baevski, and M. Auli, “A comparison of discrete la-
tent variable models for speech representation learning,” in Proc.
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2021, pp. 3050–3054.

[18] C. Du, Y. Guo, X. Chen, and K. Yu, “VQTTS: high-fidelity text-
to-speech synthesis with self-supervised VQ acoustic feature,” in
Proc. ISCA Interspeech. ISCA, 2022, pp. 1596–1600.

[19] A. Sánchez, A. Falai, Z. Zhang, O. Angelini, and K. Yanagisawa,
“Unify and Conquer: How phonetic feature representation af-
fects polyglot text-to-speech (TTS),” in Proc. ISCA Interspeech.
ISCA, 2022, pp. 2963–2967.

[20] M. Bernard and H. Titeux, “Phonemizer: Text to phones tran-
scription for multiple languages in python,” J. Open Source Softw.,
vol. 6, p. 3958, 2021.

[21] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, pp. 1735–1780, 1997.

[22] P. Ghahremani, B. BabaAli, D. Povey, K. Riedhammer, J. Trmal,
and S. Khudanpur, “A pitch extraction algorithm tuned for au-
tomatic speech recognition,” in Proc. IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2014, pp. 2494–2498.

[23] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khu-
danpur, “X-vectors: Robust DNN embeddings for speaker recog-
nition,” in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2018, pp. 5329–
5333.

[24] “M-ailabs speech multi-lingual dataset,” https://www.caito.de/
2019/01/the-m-ailabs-speech-dataset/.

[25] H. Zen, V. Dang, R. Clark, Y. Zhang, R. J. Weiss, Y. Jia, Z. Chen,
and Y. Wu, “LibriTTS: A corpus derived from librispeech for text-
to-speech,” in Proc. ISCA Interspeech. ISCA, 2019, pp. 1526–
1530.

[26] Y. Shi, H. Bu, X. Xu, S. Zhang, and M. Li, “AISHELL-3: A
multi-speaker mandarin TTS corpus and the baselines,” CoRR,
vol. abs/2010.11567, 2020.

[27] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al.,
“The Kaldi speech recognition toolkit,” in IEEE 2011 workshop
on automatic speech recognition and understanding, no. CONF.
IEEE Signal Processing Society, 2011.

[28] J. Yang and L. He, “Towards universal text-to-speech,” in Proc.
ISCA Interspeech, H. Meng, B. Xu, and T. F. Zheng, Eds. ISCA,
2020, pp. 3171–3175.

[29] A. Défossez, J. Copet, G. Synnaeve, and Y. Adi, “High fidelity
neural audio compression,” CoRR, vol. abs/2210.13438, 2022.

[30] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and
I. Sutskever, “Robust speech recognition via large-scale weak su-
pervision,” CoRR, vol. abs/2212.04356, 2022.

[31] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Proc. Conference on Neural Information Processing Systems
(NIPS), 2017, pp. 5998–6008.

[32] H. Zeinali, S. Wang, A. Silnova, P. Matejka, and O. Plchot,
“BUT system description to voxceleb speaker recognition chal-
lenge 2019,” CoRR, vol. abs/1910.12592, 2019.

620


