ISCA Archive Interspeech 2023
ISCA Archive Interspeech 2023

Multi-Level Knowledge Distillation for Speech Emotion Recognition in Noisy Conditions

Yang Liu, Haoqin Sun, Geng Chen, Qingyue Wang, Zhen Zhao, Xugang Lu, Longbiao Wang

Speech emotion recognition (SER) performance deteriorates significantly in the presence of noise, making it challenging to achieve competitive performance in noisy conditions. To this end, we propose a multi-level knowledge distillation (MLKD) method, which aims to transfer the knowledge from a teacher model trained on clean speech to a simpler student model trained on noisy speech. Specifically, we use clean speech features extracted by the wav2vec-2.0 as the learning goal and train the distil wav2vec-2.0 to approximate the feature extraction ability of the original wav2vec-2.0 under noisy conditions. Furthermore, we leverage the multi-level knowledge of the original wav2vec-2.0 to supervise the single-level output of the distil wav2vec-2.0. We evaluate the effectiveness of our proposed method by conducting extensive experiments using five types of noise-contaminated speech on the IEMOCAP dataset, which show promising results compared to state-of-the-art models.