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Abstract

The bootstrap resampling method has been popular for per-
forming significance analysis on word error rate (WER) in auto-
matic speech recognition (ASR) evaluation. To deal with depen-
dent speech data, the blockwise bootstrap approach is also in-
troduced. By dividing utterances into uncorrelated blocks, this
approach resamples these blocks instead of original data. How-
ever, it is typically nontrivial to uncover the dependent structure
among utterances and identify the blocks, which might lead to
subjective conclusions in statistical testing. In this paper, we
present graphical lasso based methods to explicitly model such
dependency and estimate uncorrelated blocks of utterances in a
rigorous way, after which blockwise bootstrap is applied on top
of the inferred blocks. We show the resulting variance estima-
tor of WER in ASR evaluation is statistically consistent under
mild conditions. We also demonstrate the validity of proposed
approach on the LibriSpeech dataset.

Index Terms: automatic speech recognition, word error rate,
statistical hypothesis testing, bootstrap, graphical modeling

1. Introduction

Word error rate (WER) is a common metric for the performance
of an automatic speech recognition (ASR) system. Derived
from the Levenshtein distance [1], WER can be calculated as
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where m; is the number of words in the ith reference, and e;
refers to the sum of insertion, deletion, and substitution errors
computed from the dynamic string alignment of the recognized
sequence with the reference sequence.

When it comes to comparing the transcription quality of
two ASR systems on the same evaluation dataset, the abso-
lute or relative WER difference of system B versus system A
is widely used:
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Oftentimes, it is crucial to understand the reliability of com-
puted WER on some evaluation dataset as well as the compar-
ison of WERs between two ASR systems. For instance, we
would like to answer if a WER of 0.05 on only 500 evaluation
utterances is trustworthy in measuring the overall ASR qual-
ity for the target domain; we also want to know if a 2% relative
WER improvement comparing ASR system B with ASR system
A is due to chance or real.
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For these purposes, statistical testing on WER has been ex-
plored [2, 3, 4, 5, 6, 7, 8]. The work of [5] presents a bootstrap
approach for significance analysis on ASR evaluation which
makes no distributional approximations and is easy to use.

Specifically, given any sequence of independent and iden-
tically distributed random variables {U; };—, we would like to
estimate the variance of some statistic 7'(Ux, ..., Uy ). The boot-
strap method [9, 10] resamples data from the empirical distri-
bution of {U;}7—; for B*°* times, and then re-calculates the
statistic 7" on each of these “bootstrap” samples. The variance
of T' can be estimated from the sample variance of these com-
puted statistics. In significance analysis for WER, U; represents
the information of the ¢th utterance, and 7" refers to the statistic
of W asin (1).

However, the vanilla bootstrap fails in dealing with depen-
dent data, which is prevalent in the speech world. More re-
cently, authors in [8] propose the blockwise bootstrap approach
that addresses this issue by dividing utterances into nonover-
lapping and uncorrelated blocks, then resampling these blocks
instead of the original data.

One key issue confronting the blockwise bootstrap estima-
tor in [8] is how to determine the block structure over utterances
in ASR evaluation such that speech recognition errors in dif-
ferent blocks are uncorrelated. In general, speech recognition
errors are considered as dependent if the corresponding utter-
ances share similar acoustic or semantic characteristics. How-
ever, it is nontrivial to properly define such dependency in a rig-
orous way, which could lead to subjective conclusions and thus
makes this approach less attractive in practical applications. A
more advanced data-driven method is called for to quantify the
dependent structure of utterances in ASR evaluation.

In this work, we propose to leverage graphical modeling
[11] to estimate the dependent structure among speech utter-
ances in ASR evaluation. Undirected graphical models have
become a powerful tool of representing complex interactions
among high-dimensional random variables. In our applications,
each utterance is represented as an embedding vector with its
acoustic and semantic information being encoded, and is con-
sidered as a random variable in the graph network. The inferred
uncorrelated blocks of utterances, will be then used in block-
wise bootstrap for performing statistical testing on WER.

Under the assumption of multivariate Gaussian among ut-
terance representation random variables, the problem of depen-
dent structure estimation is reduced to learning a sparse preci-
sion matrix and identifying its zero-pattern. The graphical lasso
[12, 13], a sparse penalized maximum likelihood estimator for
the precision matrix, has been studied in recent years. We in-
troduce this method and its variant on relaxing the Gaussian
assumption [14] to significance analysis on ASR evaluations.

Conventionally, clustering based methods can be used on
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utterance embeddings and partition them into groups. How-
ever, there is typically no theories to establish the uncorrelated-
ness between utterances from different clusters. Compared with
these methods, the use of graphical modeling provides more sta-
tistical guarantees in the dependent structure inference for ut-
terances. Moreover, our approach is able to estimate the entire
conditional independence graph and corresponding correlation
matrix, which is more flexible to use.

We mainly pursue three goals in this paper: (1) to present
new estimation approaches for utterances’ dependent structure
with the use of graphical lasso and its variant, and illustrate
their applications in significance analysis on ASR quality eval-
uations; (2) to provide theories on the consistency of the re-
sulting variance estimator; (3) to demonstrate empirical results
on LibriSpeech speech dataset using our proposed methods. To
the best of our knowledge, our paper is the first to introduce
graphical modeling based approaches in estimating underlying
dependent structure among evaluation utterances and explicitly
addressing dependent speech data in ASR evaluations. Besides
the applications to WER significance analysis, the proposed
methods could also be useful in error analysis for ASR and
correlation-aware speech model training, among others.

2. Methods

Suppose {U; }i—, is an evaluation dataset for ASR, consisting
of n utterances with the ith utterance denoted by U;. Two ASR
systems A and B are evaluated on {U;};—;. Assume we have
their evaluation results as follows:

n
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where m; is the number of reference words of the ¢th utterance,
et and eP represent the numbers of word errors in ASR sys-
tems A and B, respectively. The statistics of our interest are the
WER of ASR system A denoted as W 4, the absolute WER dif-
ference AW, and relative WER difference AW,..; comparing
ASR system B versus ASR system A. In particular, we aim to
compute the 95% confidence intervals for these statistics.

2.1. Graph Structure Estimation

We treat U; as a random variable representing the ¢th utter-
ance in the evaluation set. Denote wu; as the L-dimensional
embedding vector for U; with u; = (u1,.. .,uiL)T. Let
U; % Zle u;; be the sample mean. In practice, the rep-
resentation wu; for the utterance U; can be obtained from the
speaker embedding vector, or sentence embedding vector of the
reference, or their concatenation.

Suppose the random vector (Uy, ..., U,)" for utterances
has the density P*. Then an undirected graph G for P* has n
vertices, collected in a set V, one for each variable. We repre-
sent the edges as a set F of unordered pairs: (i,7) € F if and
only if there is an edge between U; and U;. In a conditional
independence graph, an edge between U; and Uj is absent if
U; and Uj are independent (denoted as U; 1L Uj), given the
other variables. With the observations of {u; }i—,, the goal is to
estimate the graph structure G.

Under the assumption that (Us,...,Un)T ~ N (u, X),
it has been shown that there is no edge between U; and U; if
and only if ©;; = 0, where © = X~ is the precision matrix.
Therefore, the graph estimation problem in Gaussian graphical
models are equivalent to the estimation of a sparse ©.

The graphical lasso estimator [12, 13] encourages some of
the entries of the estimated precision matrix to be zero. Specif-
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ically, it maximizes the ¢;-regularized log-likelihood under the
constraint that © is positive definite (denoted as © > 0):

}, (&)

where log det(-) denotes the log-determinant of a matrix, tr(-)
represents the trace of a matrix, A is a regularization parameter,
and X is the empirical covariance matrix:

O, = argmax
00
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The optimization problem in (5) can be solved using the coor-
dinate descent algorithm [15, 16]. The regularization parameter
A can be chosen via cross-validation in practical applications.

While the graphical lasso is useful in many scenarios, a re-
liance on exact normality can be limiting. The nonparanormal
[14], a form of Gaussian copula, weakens the Gaussian assump-
tion by imposing normality on the transformed random vector
(f1(U1), ..., fu(Un))T, with each fi(-) being a function that
meets certain conditions. This allows arbitrary single variable
marginal probability distribution in the model.

Specifically, we say (Un,...,U,)" follows a nonpara-
normal distribution if there exist monotonic and differen-
tiable functions { f;(-)}7=; such that (f1(U1), ..., fa(Un))T ~
No (i, 3). Under this assumption, it was shown in [14] that
there is no edge between U; and Uj if and only if ©;; = 0.
The nonparanormal estimator uses a two-step procedure: (1) for
each variable, replace the observations with their normal scores,
subject to a Winsorized truncation, and (2) apply the graphical
lasso to the transformed data to estimate O. .

Once we obtain an estimated sparse precision matrix © via
the graphical lasso or nonparanormal estimator, we can deter-
mine the corresponding graph structure by identifying the zero-
pattern of o. Independent blocks of random variables (i.e. ut-
terances) can thus be formed by distinct connected components
of the estimated graph. To be more specific, let {§k}f:1 be
the set of indices for K connected components in the estimated
graph, then under the Gaussian or nonparanormal assumption,
we have U; L U; for any 7 € §k/ and j € §ku where ¢ # j
and k' # k”. Here, it is worth noting that uncorrelated and joint
normality implies independent random variables. Although in
this paper we only utilize the inferred blocks in significance
analysis for WER, the estimated covariance matrix ©~! from
the method could be useful in other practical applications.

2.2. Bootstrap with Inferred Blocks

Once the set of independent blocks {gk}}?:l for utterances is
estimated, we can apply the blockwise bootstrap [8] to compute
the 95% confidence interval for any WER related statistic.

For b = 1,..., B*°" where B*°! is a large number, we
randomly sample with replacement K elements S ib), R Sfé’)

from the set of {§k}kK:1 to generate a bootstrap sample

{(mi7e?7eiB)}iE§(b)ak/:17"'5K5 (7)
k!

where each S ,(Cl,’) € {§k}kK:1 Then for this bootstrap sample,

the relative WER difference of system B versus system A can

be computed as
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Once we have all {Ang computed, the 95% confi-
dence interval for the statistic AW,.el can be calculated by their

empirical percentiles at 2.5% and 97.5%:

[percentile(Aerh 2.5%), percentile(AWTbel, 97.5%)} .9
Here, a 95% confidence interval means that if we were able to
have 100 different datasets from the same distribution of orig-
inal dataset, and compute a 95% confidence interval based on
each of these 100 datasets, then around 95 out of these 100 con-
fidence intervals will contain the true value of the statistic of
interest [17, 18, 19].

The confidence intervals for W4 or AW can be calcu-
lated in a similar manner with above.

3. Theoretical Properties

We present theories to show the blockwise variance estimator
with inferred blocks from the graphical lasso is statistically con-
sistent for WER estimation under some mild conditions. Specif-
ically, as the number of evaluation utterances increases indefi-
nitely, the resulting sequence of variance estimates converges to
the truth variance [20].

For simplicity, suppose all utterances in the evaluation set
have the same number of words in the reference, that is, m; =
mforalli = 1,...,n. Denote Z; = e;/m. Then the statistic
of interest can be written as

1 n

Further, assume the n utterances can be divided into K

(10)

nonoverlapping and independent blocks, denoted as {Sk}kal
with each block having the same number of utterances d;,.
Suppose {§k} Kn is the set of estimated independent
blocks from the graphical lasso. Following Theorem 1 in [21],
under some conditions on the precision matrix of Gaussian dis-
tribution and the scaling of triple (L, D, n), the set of {§k}kK:"1

approaches the true set of {Sk}kKi’l with a high probability
when the embedding dimension L is large enough. Here, D
represents the maximum of node degrees in graph G. Specifi-
cally for some constant ¢ > 0

P({&A’k},{?:l = {Sk}kkjl) >1—exp(—clogn) — 1.

We further let

an

(12)

Z Zi
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be the statistic of interest from the kth inferred block, where

|Sk\ refers to the cardinality of the set of Sj.. Consider the cor-
responding blockwise variance estimator

U"_K Z( Siom ")2’

where d, = [n/K,] denotes the average number of utter-
ances in the inferred blocks. The following establishes its Lo-
consistency.

(13)

Theorem 1 Assume the asymptotic variance of W, is

lim nE(W, — E(W,))> = o> € (0,00)

n—r00

(14)
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and p = E(Z;) foranyi = 1,...,n. Let d;, be s.t. d;, — oo
and K} — oo asn — oco. If n’E(W,, — p)* is uniformly
bounded and the conditions of Theorem 1 in [21] are satisfied,
then
&3 —L, ot asn — 0o. (15)

The proof is straightforward by connecting the graph struc-
ture recovery property (11) with Theorem 1 in [8]. Specifi-
cally, the integrals of expectation and variance of 62 can be
decomposed into the correct graph structure recovery part (with
a high probability) and the incorrect graph structure recovery
part (with a low probability). The former follows the proof of
Theorem 1 in [8]. Notice that each (W3, ,, — W.,,)? is bounded
at the worse case, then the latter part can be dominated by
exp(—clogn) and become negligible as n goes to infinity.

This theorem shows statistical guarantees in the dependent
structure inference for utterances and provides the convergence
property of the corresponding blockwise estimator.

4. Experiments
4.1. Dataset and Setup

We experiment with the LibriSpeech data [22], consisting of
960 hours transcribed training utterances from 2,338 speak-
ers. The evaluation dataset has the splits of test-clean and
test-other. Table 1 shows detail of LibriSpeech evaluation
set on number of utterances and number of speakers.

Table 1: Summary of LibriSpeech evaluation dataset.

‘ test-clean ‘ test-other

2,620 2,939
40 33

Number of utterances
Number of speakers

We consider two ASR systems A and B in this investiga-
tion. The ASR system A is a RNN-T model with the Emformer
encoder [23], LSTM predictor, and a joiner. The ASR system
B utilizes the fast-slow cascaded encoders [24]. Both models
have around 80 million parameters in total and are trained from
scratch using the training utterances of LibriSpeech.

Table 2 displays the empirical WERs of both ASR systems
as well as the absolute and relative WER difference of ASR sys-
tem B compared with system A. The reported WERs are multi-
plied by 100.0 as per convention. We observe that ASR system
B achieves large improvement over system A.

Table 2: WER results of ASR systems A and B.

‘ test-clean ‘ test-other

WER of ASR System A 3.77 10.10
WER of ASR System B 3.25 8.13

Absolute WER difference -0.52% -1.97%
Relative WER difference -13.8% -19.5%

With this setup, the goal is to calculate the 95% confidence
intervals for WER of ASR system A, relative and absolute WER
difference between ASR system B and system A. We compare
various approaches in the experiments including vanilla boot-
strap (Bootstrap) [5], blockwise bootstrap (BlockBootstrap)
[8], and the proposed method (InferredBlockBootstrap).



We set BY°! to 10,000 for each bootstrap based method.
For the BlockBootstrap method, we treat the utterances from
the same speaker as a block. To apply the InferredBlockBoot-
strap approach, the pre-trained BERT (base model, uncased)
[25, 26] is leveraged to obtain the sentence embedding of each
reference in evaluation utterances. The representation has 768
dimensions. Then among the utterances of each speaker, we
adopt the graphical lasso on their sentence embedding vectors to
estimate the underlying graph structure as well as correspond-
ing independent blocks. Cross-validation is utilized to select
the regularization parameter A\. Then the blockwise bootstrap
method is applied on the inferred blocks. Here, the assumption
we made is that ASR errors on any utterances from different
speakers are independent with each other, while any utterances
from the same speaker but having very different semantic or
linguistic characteristics are also considered as independent.

4.2. Results

For each method in the comparison, Table 3 shows the calcu-
lated 95% confidence intervals for WER of ASR system A. For
both of test-clean and test-other sets, we can see that
the 95% confidence intervals from InferredBlockBootstrap are
wider than the ones generated from Bootstrap, but are narrower
than the ones computed by BlockBootstrap.

Table 3: Confidence intervals for WER of ASR system A.

| test-clean | test-other

Bootstrap [3.54, 4.00] [9.66, 10.53]
BlockBootstrap [3.33, 4.23] [8.40, 12.20]
InferredBlockBootstrap [3.41, 4.14] [8.79, 11.65]

Table 4 and Table 5 also display the computed 95% confi-
dence intervals for the absolute and relative WER difference be-
tween ASR systems B and A, respectively. The findings are sim-
ilar to the ones that we observe above. On the test-other
dataset in Table 5, the width of the 95% confidence interval
from Bootstrap is 4.8%, while the width of the one from Block-
Bootstrap is 7.9%. Also the 95% confidence interval from In-
ferredBlockBootstrap has the width of 6.7%, which is around
40% wider than the one from Bootstrap but 15% narrower than
the one from BlockBootstrap.

We observe that all of these 95% confidence intervals com-
puted in Table 4 and Table 5 do not cover the point of 0, which
means that the ASR system B is statistically significantly better
than the system A in term of ASR quality.

Seen from these results, the vanilla Bootstrap method
ignores the dependency among utterances and thus leads to
narrower confidence intervals, which might result in over-
optimistic conclusions due to false-positive discoveries. At an-
other extreme, due to the subjective definitions of block struc-
tures, the BlockBootstrap method could be conservative on
claiming statistical significance, where the corresponding con-
fidence intervals are wider in the experiments. Instead, the pre-
sented InferredBlockBootstrap approach utilizes data-driven
methods to explicitly model the dependent structure among ut-
terances and draw sound conclusions.

Figure 1 shows the number of utterances and number
of inferred blocks from the InferredBlockBootstrap method
for each speaker. In total, there exist 822 blocks for the
test-clean set and 912 blocks for the test-other set.
The median of the ratios between the block count and utterance
count per speaker is around 0.30.
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Table 4: Confidence intervals for the absolute WER difference
of ASR system B compared with ASR system A.

‘ test-clean ‘ test-other

Bootstrap [-0.67%, -0.35%] | [-2.24%, -1.69%]
BlockBootstrap [-0.71%, -0.32%] | [-2.63%, -1.44%]
InferredBlockBootstrap | [-0.70%, -0.34%] | [-2.50%, -1.53%]

Table 5: Confidence intervals for the relative WER difference of
ASR system B compared with ASR system A.

\ test-clean \ test-other

Bootstrap [-17.4%, -9.6%] | [-21.9%, -17.1%]
BlockBootstrap [-18.0%, -8.9%] | [-23.5%, -15.6%]
InferredBlockBootstrap | [-18.1%, -9.2%] | [-22.8%, -16.1%]

#ofutts sofutts
#ofblocks #ofblocks

) 2 0 80 100 0 2 a 60

(b) test-other

80 100 140

(a) test—-clean

Figure 1: Number of utterances and number of inferred blocks
for each speaker.

For the introduced InferredBlockBootstrap approach, we
also experiment with the use of nonparanormal, which weakens
the Gaussian assumption imposed on the embedding vectors for
evaluation utterances. Table 6 shows the computed 95% confi-
dence intervals on WER of ASR system A for graphical lasso
and nonparanormal based InferredBlockBootstrap. From the
results, we observe that nonparanormal based method results
in wider confidence internals compared with the ones obtained
from graphical lasso, but they are still narrower than those com-
puted by BlockBootstrap.

Table 6: Comparison of graphical lasso and nonparanormal
based InferredBlockBootstrap on the computation of confi-
dence intervals for WER of ASR system A.

| test-clean | test-other

InferredBlockBootstrap
- graphical lasso [3.41,4.14] [8.79, 11.65]
- nonparanormal [3.37, 4.18] [8.47, 12.07]

5. Conclusions

In this paper we propose to use the graphical lasso and its
variant of nonparanormal to estimate the dependent structure
among speech utterances in ASR evaluation. We demonstrate
its applications on WER significance analysis through block-
wise bootstrap resampling with inferred independent blocks.
Results are also presented on LibriSpeech for the comparison of
95% confidence intervals computed from various approaches.
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