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Abstract
Automatic speech recognition systems based on self-supervised
learning yield excellent performance for read, but not so for
conversational speech. This paper contributes insights into
how corpora from different languages and speaking styles are
encoded in shared discrete speech representations (based on
wav2vec2 XLSR). We analyze codebook entries of data from
two languages from different language families (i.e., German
and Hungarian), of data from different varieties from the same
language (i.e., German and Austrian German) and of data from
different speaking styles (read and conversational speech). We
find that – as expected – the two languages are clearly separable.
With respect to speaking style, conversational Austrian German
has the highest similarity with a corpus of similar spontane-
ity from a different German variety, and speakers differ more
among themselves when using different speaking styles than
from other speakers of a different region when using the same
speaking style.
Index Terms: conversational speech, German varieties, Hun-
garian, self-supervised speech representations, wav2vec2

1. Introduction
Research on automatic speech recognition (ASR) is strongly
domain dependent due to the diversity of its applications (e.g.,
keyword spotting, dictation, and human interaction with social
robots). Usually, each application is trained with different task-
specific data sets. For continuous ASR, mostly two speaking
styles are distinguished, read (RS) and spontaneous speech 1.
Probably the best-known RS corpus is Librispeech [1], where
ASR performance already converges to its limit (2.5%) [2].
Also for less spontaneous conversational speech (CS) (e.g.,
Switchboard corpus [3]), performance reaches benchmark lim-
its (4.3%) [4]. Nevertheless, for more spontaneous CS (i.e.,
casual face-to-face conversations), performance ranges only
between 16% and 33%, given high inter-speaker and inter-
conversation variation [5, 6].

One of the reasons for why ASR performance degrades
with increasing degree of spontaneity is the reduced spectral
space [7, 8]. The same authors also state that one of the most im-
portant research issues is how to train and adapt statistical mod-
els for speech recognition. Modern ASR architectures have a
strong focus on adaptation by developing self-supervised learn-
ing of speech representations, such as those provided within
the wav2vec2 framework, which make use of large amounts of
unlabeled multilingual data (e.g., XLSR [9, 10]). The experi-
ments in [5] and [11] showed that ASR performance improves

1Note that we further distinguish between more restricted conversa-
tional speech (e.g., telephone speech or task-oriented speech) and ca-
sual face-to-face conversations without any topical restrictions.

by finetuning the XLSR model with labeled data coming from
a target domain (i.e., in both cases different varieties of Ger-
man). For Hungarian conversational speech, [12] reached ab-
solute WER improvements of approx. 12%. Furthermore, for
telephone CS from low-resourced languages (BABEL) [13, 14],
large WER improvements were reported on out-of-pretraining
languages in comparison to baselines (e.g., absolute WER im-
provements of 9% on Swahili or 7.4% on Tagalog). The ques-
tion arises what kind of information initial XLSR speech rep-
resentations encode, as even out-of-pretraining languages seem
to be well represented after finetuning. The aim of this work is
to analyze initial XLSR speech representations to gain insights
about how they encode data from different languages, their vari-
eties, different speaking styles and different speakers. We aim at
contributing to a better understanding of self-supervised speech
representations, which is of interest not only to scientists in the
field of ASR, but also to speech scientists interested in acoustic
characteristics of different speaking styles.

Our approach towards finding an answer to this question is
inspired by the analysis on similarity matrices of XLSR code-
book entries for 12 or 17 different languages by Conneau et
al. [10]. Whereas that study demonstrated how the codebook
entries group together related languages, in this paper we take
the approach one step further by analyzing not only different
languages, but also different language varieties, and individual
speakers of different speaking styles (i.e., read, spontaneous-
task oriented, and casual conversational speech). More con-
cretely, we compare two languages from to different languages
families, where one is an out-of-pretraining language (i.e., Hun-
garian) and one is an in-pretraining language (i.e., German). In
addition, we perform a speaker-wise analysis, allowing us not
only to study the distances of languages, styles and varieties, but
also the distances between speakers, as well as the distance of
speakers with themselves when producing different styles. We
aim at answering the more general research question of whether
the frequency usage of shared discrete speech representations
(given by XLSR) encode acoustic properties/characteristics for
different languages, varieties, speaking styles and speakers.

2. Materials
Our experiments are based on German (G), Austrian German
(AG) and Hungarian (H) corpora (cf. Tab. 1), covering read
speech (RS) and conversational speech (CS) of different de-
grees of spontaneity: CS+ for topic-free casual conversations
and CS− for task-oriented/task-restricted conversations.

2.1. GRASS

The Graz Corpus of Read and Spontaneous Speech (GRASS)
[15, 16] contains 6h of read (GRRS) and 19h of conversational
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speech (GRCS) from 38 Austrian speakers (19f/19m). GRRS
and GRCS are spoken by the same 38 speakers. For GRCS, 19
pairs of speakers who have known each other for several years,
were recorded for one hour. Chosen topics were not restricted
leading to casual speech (thus classified as CS+ in Tab. 1) with
characteristics such as frequently occurring overlapping speech,
laughter, and dialectal pronunciation [16]. After the conversa-
tion, speakers separately read short stories as well as selected
isolated sentences. For the experiments with GRCS, chunks
with artefacts, noise, whispering, foreign words and dialect lex-
emes were excluded, resulting in a total deletion of approx. 4h,
leaving approx. 13.5h for our experiments. Then, filler labels
were unified. We noticed long silence parts at the beginning of
all GRRS chunks which could distort this analysis due to higher
amounts of codebook usage relating to silence parts. Hence, we
cut out 1.3s of audio at the beginning of each file.

2.2. GECO

The GECO corpus [17] contains 46 spontaneous dialogues of
approx. 25 minutes between female speakers. The corpus in-
troduces two settings: 1) a unimodal setting with 22 dialogues
(GECO-Mono), where participants were separated by a solid
wall and 2) a multimodal setting with 24 dialogues (GECO-
Multi), with face-to-face conversations comparable to GRCS.
The unimodal setting involves 12 speakers, of whom 7 returned
for the multimodal setting meaning that some dialogue pairs are
present in GEMO and GEMU. In both settings, speakers were
able to freely talk about any topic they want (thus classified as
CS+ in Tab. 1). For our experiments, GEMO and GEMU were
preprocessed similar as GRCS and almost all chunks were kept.

2.3. KIEL

The Kiel Corpus of Spoken German (KIEL) [18] contains ap-
prox. 5h of read and spontaneous speech produced by speak-
ers from Northern Germany. The read speech (KIRS) contains
sentences and stories from 53 speakers (26f/27m). The cor-
pus has two spontaneous components: First, the ”appointment-
making-scenario” (KIVM), which contains approx. 4h of dia-
logues from 43 speakers (22f/21m) who were making appoint-
ments. In this scenario, speech was only recorded if participants
were holding a button pressed which was also blocking the in-
terlocutor’s channel. Second, the ”video-task-scenario” (KIVT)
contains approx. 1h of dyadic conversations. In this scenario,
manipulated video materials from a television series were pre-
sented separately to two subjects with the task to find the differ-
ences in the video they saw. As KIVM and KIVT contain task-
oriented/topic-restricted dialogues, we classify them as CS− in
Tab. 1. As for GRCS, also for KIVM and KIVT chunks with
laughed speech and noise were excluded and filler annotations
were unified. For KIRS, depending on given transcription mate-
rial, we utilized already trimmed audio-files directly or trimmed
the audio-files on the basis of the boundary markers of given an-
notations. In case of all GECO and KIEL corpus components
we excluded resulting chunks with durations greater than 20s
due to our limited computational infrastructure.

2.4. BEA

The original BEA (“BEszélt nyelvi Adatbázis” in Hungarian,
meaning spoken language database) aimed at collecting studio
quality speech data from 500 speakers, representative in age,
sex, dialect, and educational background, primarily for linguis-
tic research purposes [19]. For the experiments, we used the

Table 1: Overview of used data sets: Hungarian (H), German
(G) and Austrian German (AG) corpora, containing read (RS)
and conversational speech of different degrees of spontaneity
(i.e., CS+ for casual face-to-face conversations and CS− for
task-oriented/task-restricted conversations).

Corpus Abbr. Style Variety/
Lang. Hours

BEA Discourse BECS CS− H 14.2
BEA Readtext BERS RS H 3.8

GECO-Multi GEMU CS+ G 9.8
GECO-Mono GEMO CS− G 8.92
GRASS CS GRCS CS+ AG 13.5
GRASS RS GRRS RS AG 4.6
KIEL-Verbmobil KIVM CS− G 3.72
KIEL-Videotask KIVT CS− G 1.3
KIEL RS KIRS RS G 2.8

BEA-Base subset [12] of the database, specifically the read
Readtext (BERS) and the conversational Discourse (BECS)
modules of the ”train-114” subset. Both, BERS and BECS in-
cluded the same speakers while female and male participants
were closely balanced. In case of BECS, each conversation
was recorded approx. 45min and one experimenter guided
the casual conversations between the speaker and an optional
discourse partner on various random topics. The recordings
were made in the same studio environment and were cleaned
from ambiguous and parallel parts, similarly to the previous
databases. The recordings containing the voices of the exper-
iment leader or of a 3rd person were excluded from the investi-
gations. Hence, conversations from BECS included recordings
which relate to only one speaker which makes it possible to
compare specific speakers between BECS and BERS but, dif-
ferent from GRCS, it is impossible to compare one speaker pair
from BECS with respective speakers from BERS.

3. Analysis of self-supervised speech
representations

We hypothesize that shared discrete speech representations of
different corpora encode speaking styles and varieties. Here,
we investigate this hypothesis by analyzing similarity matri-
ces resulting from a comparison of normalized frequency usage
of discrete XLSR speech representations (introduced by code-
books) from different data sets. The source code related to our
analysis is publicly available and can be accessed on GitLab2.

3.1. From similarity matrix to PCA space

We used wav2vec2 [9] with fairseq [20] to compute discrete
shared speech representations with a multilingual pre-trained
model (XLSR) [21]. XLSR is pre-trained in self-supervision
with 56000h of speech data coming from 53 languages includ-
ing German but not Hungarian and comprising approx. 99% of
read speech and 1% of spontaneous speech (BABEL). XLSR
has 315M parameters containing 24 transformer blocks with
model dimensions 1024, inner dimension 4096 and 16 atten-
tion heads. Given the pre-trained model, we computed latent
speech representations and utilized the model’s quantizer to ob-
tain respective codebook indices of shared discrete representa-

2https://gitlab.tugraz.at/speech/speechcodebookanalysis
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Figure 1: Speaker-dependent codebook usage with respect to the considered German and Hungarian corpora in the 3-dimensional
PCA space after transforming their similarity matrix which results from codebook frequency usage of XLSR. BECS (olive) and BERS
(pink) as well as GRCS (red) and GRRS (purple) involve the same speakers and filled circles with black outlines indicate corpus
centroids. Dashed line connections of black rectangles and diamonds in (c) illustrate distances between BECS and BERS referring to
same speakers as well as GRCS and GRRS referring to same speakers of one GRCS conversation.

tions. The quantizer is based on product quantization introduc-
ing G = 2 codebooks with each of them having V = 320 en-
tries, resulting in a total number of 102400 possible codebook
combinations.

In order to compare the frequency usage of speech rep-
resentations coming from XLSR with respect to speakers, we
quantized the utterances of each speaker of each preprocessed
corpus and counted the utilized codebook entries. Then, we nor-
malized each speaker’s frequency usage with the total number
of features per speaker, resulting in speaker-dependent prior dis-
tributions of codebook usage. Given these priors, we generated
a similarity matrix by computing similarities of resulting distri-
butions with a Jensen-Shannon divergence. Finally, the similar-
ity matrix was transformed to a 3-dimensional PCA space.

3.2. Interpretation of three PCA dimensions

Fig. 1 shows 3 speaker-dependent scatter plots (PCA1/PCA2,
PCA1/PCA3 and PCA2/PCA3) from the resulting 3-
dimensional PCA-space. Speakers of each corpus are depicted
in a different color. First thing we notice is that PCA1 describes
language, where component values > 0 categorize Hungarian
speech and component values < 0 (Austrian) German speech.
Second thing we notice is that PCA2 separates the same
GRASS speakers in different clusters based on speaking style.
In general, we observe that PCA2 characterizes our degree of
spontaneity within (Austrian) German where components > 0
visualize almost non-overlapping RS corpora. In the opposite
direction, conversational components of higher spontaneity
may overlap. Third thing we notice is that PCA3 distinguishes
Hungarian speaking styles where components > 0 define
Hungarian read speech and components < 0 Hungarian
conversational speech.

3.3. Centroids and their distances

At first, we compare resulting Hungarian centroids and (Aus-
trian) German centroids in the 3-dimensional PCA-space (see
filled circles with black outlines) with respect to Euclidean dis-
tances. In case of Hungarian centroids, we measured a distance
of 1.3 between BECS and BERS which is mainly described by
PCA3. In order to gain more insights into how speech represen-
tations differ between BECS and BERS, we randomly selected

two speakers within BECS and measured their Euclidean dis-
tance to BERS resulting in 2.47 and 0.35 (see black dashed
lines between olive and pink diamonds in Fig. 1). In general,
mean and standard deviation of distances between same Hun-
garian speakers were 1.3 ± 0.7. In case of (Austrian) German
centroids, we compared the resulting centroid of GRCS with
the other 6 German-speaking centroids. We observe the small-
est Euclidean distance between GRCS and GEMO (0.46) fol-
lowed by distances with KIVM (0.53), GEMU (0.58), KIVT
(1.19) and KIRS (1.77). The highest distance was between
GRCS and GRRS (2.3), which is to some extent surprising as
these two corpora contain speech from the same speakers. In
order to gain more insights into how speech representations dif-
fer between GRCS and GRRS, we measured the Euclidean dis-
tance between a speaker pair within GRCS and to GRRS. We
find that their distance in GRCS is approx. 0.07, whereas dis-
tances between the same speaker in GRCS and GRRS are con-
siderably higher, i.e., approx. 2.56 and 2.4 (see black dashed
lines between red and purple rectangles in Fig. 1). In gen-
eral, mean and standard deviation of distances between same
Austrian German speakers were 2.3± 0.4. Overall, when com-
paring the distances of all 19 speaker pairs, we found no cor-
relation between GRCS and GRRS (Pearson Correlation Co-
efficient: r ≈ 0.02, p ≈ 0.93). These results show that the
speech representations are more sensitive to the speech char-
acteristics typical for read vs. conversational speech than to
speaker specific characteristics. Finally, we compared the re-
sulting centroid of BECS with German-speaking centroids and
resulting centroid of GRCS with Hungarian-speaking centroids.
We observe high Euclidean distances > 7.1 between BECS and
the 6 (Austrian) German centroids with the smallest distance to
KIVT (7.18) and the highest distance to GRCS (7.96). Overall,
distances between GRCS and Hungarian centroids were > 7.4
since distance to BERS was 7.46.

3.4. Clustering of the 3-dimensional PCA space

Next, we performed k-Means clustering by using the result-
ing 3-dimensional PCA space with 6 clusters. This cluster-
ing enables classification by evaluating Euclidean distances
to the 6 generated cluster centroids. We only measured
the 2-dimensional distances with respect to projections in
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Figure 2: Resulting confusion matrix when clustering the 3-
dimensional PCA space of the speaker-dependent similarity
matrix (see Fig. 1) with k-Means introducing 6 centroids.

PCA2/PCA3, because those dimensions describe (Austrian)
German (PCA2) and Hungarian (PCA3) speaking styles which
is the focus of this study. Fig. 2 shows the resulting confu-
sion matrix. The clusters correlate with the degree of (Austrian)
German spontaneity (CS+ and CS−), correlate for (Austrian)
German read speech with variety (GRRS and KIRS) and for
Hungarian speech with speaking style (BERS and BECS). In-
terestingly, for German, clustering did not separate variety, but
only the degree of spontaneity.

With respect to the confusions that occur, nearly all speak-
ers from both (Austrian) German RS corpora were assigned
correctly (KIRS: approx. 70%; GRRS: 90%), whereas only
approx. 40% of speakers from CS− corpora were correctly
assigned as CS−, while approx. 20% of them were confused
with CS+, 2% of them were confused with KIRS and GRRS,
10% of them were confused with BECS and 20% of them were
confused with BERS. In general, confusions of CS+, CS− and
KIRS with BEA (approx. 20% in case of BERS) can be ex-
plained by our analysis approach which compares only dis-
tances within the dimensions PCA2 and PCA33. Likewise, as-
signing speakers from speaking style CS+ was easier in gen-
eral leading to a confusion with CS− of only approx. 7%. F1-
scores of CS+ and CS− were 0.77 and 0.45. In case of BECS
approx. 80% of the speakers were correctly assigned, while ap-
prox. 20% of them were confused with CS− and approx. 7%
of them were confused with BERS. Likewise, in case of BERS
approx. 80% of the speakers were correctly assigned, while
approx. only 7% of them were confused with BECS. Corre-
sponding F1-scores of BECS and BERS were 0.78 and 0.74.
These clustering results are in line with our earlier observation,
as there is no confusion between GRCS (CS+) and GRRS. Si-
multaneously, confusions between Hungarian speaking styles,
namely BECS and BERS, were also small.

4. General Discussion and Conclusion
The main aim of this paper was to test the hypothesis that
shared discrete speech representations from speakers of differ-
ent corpora encode languages, varieties and speaking styles.

3Note that we could easily implement a condition on PCA1 if the
aim of our study would be a detection task

To analyze this hypothesis, we performed a clustering experi-
ment with XLSR codebook entries from the different data sets,
demonstrating that, in addition to languages, read and spon-
taneous speaking styles are indeed also distinguished in this
feature space. Based on a 3-dimensional PCA space, inde-
pendent of language (PCA1) almost all speakers from the read
speech corpora were assigned correctly to the corresponding
clusters, for the spontaneous corpora, however, this was only
the case with CS+ and BECS with corresponding F1-scores of
0.77 and 0.78. We observed that speech representations of Ger-
man spontaneous speaking style showed variety-independence,
which we explain by the strongly varying speech representation
usage. For read speech, we can distinguish between the Ger-
man and Austrian German variety. In general, our findings are
in line with those in the literature: The study by Conneau et
al. [10] used similar methods to cluster discrete speech repre-
sentations of multilingual pretrained wav2vec2 models, demon-
strating the possibility of grouping related languages. Another
study on dialect clustering with sentence vector representations
based on character-based metrics also generated plausible clus-
ters [22]. They found three emerging noticeable clusters in case
of Japanese varieties, namely Tohoku dialect, Tokyo dialect and
a combination of three Western dialects (Kansai, Chugoku and
Kyushu).

Another focus of our analysis was on how the speech rep-
resentations of the same speakers behave and whether they ex-
plain different degrees of spontaneity. We found that Austrian
German speakers differ the most between different styles since
mean distance of same Austrian German speakers was high
(2.3). In contrast, mean distance of same Hungarian speakers
was smaller (1.3). Furthermore, we found that Austrian Ger-
man speakers also differ more from themselves within different
styles, indicating speaker identity independence of the speech
representations. Overall, our results indicate that speech rep-
resentations vary the most among Austrian German speakers.
Also Asami et al. [23] found that GMM supervectors based on
utterances can discriminate read and spontaneous speech with
less speaker-dependency. Simultaneously, the authors state that
clustering spontaneous utterances is more difficult than read ut-
terances.

To conclude, the results suggest that distance calculation
based on shared quantized latent speech representations is also
meaningful on a much finer granularity level (i.e., per speaker
per speaking style) than it was introduced in [10] for languages.
This may open new perspectives in speech data selection both
for supervised and self-supervised learning, as speech sections
matching the desired development set (or speaking style) could
be collected at a relative low cost, requiring only a pre-trained
wav2vec2 model but without the need of any additional infor-
mation beyond the waveform. Furthermore, it may be worth
exploring meaningful acoustic correlates that could shed more
light on the nature of elusive self-supervised speech representa-
tions. We are going to extend our investigations in these direc-
tions in the future.
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