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Abstract

With advances in mobile computing, smart glasses are becom-
ing powerful enough to generate real-time closed captions of
live conversations. Such system must distinguish speech from
the conversation partner from the wearer’s, and in public places
it must not transcribe speech from unrelated bystanders to avoid
confusion and to honor privacy.

We propose an end-to-end modeling approach that lever-
ages the smart glasses’ microphone array. But we go beyond
beamforming for improved target-speaker SNR: We feed mul-
tiple audio channels simultaneously to a single ASR model as
a basis for speaker-attributed transcription and suppression of
bystander cross-talk.

Our proposed multi-channel directional ASR model pro-
cesses multiple beamformer outputs for different steering di-
rections simultaneously and combines it with serialized out-
put training. Under room-acoustics and noise simulation, we
demonstrate near perfect wearer/conversation-partner disam-
biguation and suppression of cross-talk speech from non-target
directions.

Index Terms: speech recognition, multi-channel, multi-talker
ASR, cross-talk suppression

1. Introduction

We introduce an ASR model that receives multiple audio in-
put channels simultaneously. Besides SNR improvement, it
leverages the multi-channel input more directly to disambiguate
speakers from different directions and to suppress cross-talk.
Automatically transcribing speech of a conversation partner at
a distance of several feet is an important scenario—consider the
automatic generation of captions for deaf or hard-of-hearing
users. Background noise, reverberation, overlapping speech,
and interfering speakers make this a challenging task. As a rem-
edy, one can capture the speech with a microphone array—in a
sense, that’s what humans do. Microphone-array methods often
aim to improve the SNR of target speech.

Literature roughly divides microphone-array based ASR
into two categories: end-to-end approaches and hybrid ap-
proaches. In the end-to-end approaches [1, 2, 3, 4, 5], the
multi-channel ASR model is optimized only via an ASR cri-
terion with or without explicit separation modules. MIMO-
speech [4] is a multichannel end-to-end neural network that de-
fines source-specific time-frequency (T-F) masks as latent vari-
ables in the network, which in turn are used to transcribe the
individual sources. In [5], MIMO-speech is further improved
by incorporating an explicit localization sub-network. Recent
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studies [6, 7] in ASR and speaker separation have also inves-
tigated directly incorporating spatial features instead of using
explicit sub-modules jointly trained with the ASR module. For
instance, [7] proposes an all-in-one” model where the 3D spa-
tial feature is directly used as input to the ASR system without
explicit separation modules.

Hybrid methods typically employ a pipeline-based
paradigm, where a speech separation module explicitly sep-
arates the clean target speech or explicitly predicts speaker
related masks [7, 8, 9, 10, 11]. For example, Chen et al. [8]
proposed a method for estimating a target speaker mask with
multi-aspect features that can extract the target speaker from
a speech mixture. The extracted speech signal is then fed
into ASR. However, such end-to-end and hybrid approaches
for multi-channel ASR involve explicit speaker separation or
masking, before inputs are fed input into the ASR system, or
concatenating the spatial cues with the ASR features.

In contrast, our proposed approach utilizes multiple su-
perdirective beamformer outputs for different steering direc-
tions, which are processed simultaneously by a single ASR en-
coder. This allows the system to implicitly perform speaker dis-
ambiguation and suppression (and some speech separation), by
using directional information, effectively learning to compare
the different beamformer outputs. Sometimes this is referred to
as the cocktail-party effect [12]. One benefit is that this method
does not use explicitly extracted speaker characteristics.

The microphone array in this work is a simulation of Project
Aria smart glasses[13]. Project Aria glasses are prototype smart
glasses with a broad range of sensors, available to research insti-
tutions and academia for research on ego-centric smart-glasses
applications. Project Aria’s microphone array consists of 7
channels as shown in Fig. 1. Although the work in this paper
only used simulations instead of real Aria recordings, we tested
the models with a real-time prototype. Anecdotally, it works
reliably, consistent with the experimental results.

Micé
Mic4

MicO

Mic3
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Figure 1: Microphone locations on Project Aria glasses.

2. Multi-channel Directional ASR

Fig. 2 shows the architecture of the proposed model. It con-
sists of a front-end with multiple superdirective beamformers
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Figure 2: Proposed directional speech recognition architecture.

followed by a ASR module. The ASR module receives mul-
tiple input streams and is trained via serialized output training
[14, 15] to detect speech from different directions. Unlike a
standard single-channel ASR system, the multi-channel direc-
tional ASR system can leverage the differences in the direc-
tional outputs from the beamformers, allowing it to classify and
separate speech signals arriving from different directions.

A straight-forward way is to feed all microphones’ raw au-
dio into N parallel front-ends, hoping that the model will au-
tomatically learn to separate speech from different directions.
This, however, does not work: Our usual ASR feature extractors
remove phase information—but temporal differences are the
most important information for detecting direction of arrival.
Instead, in this work, we pre-process the raw multi-channel
audio by beamforming it for K horizontal steering directions
around the smart-glasses device plus one in the speaker’s mouth
direction. These beamformers use predetermined coefficients.
The ASR feature extraction front-end is then applied to these
K + 1 beamformed channels, the output of which are concate-
nated and fed into the ASR encoder neural network. This maps
the problem from comparing phase differences to one of com-
paring magnitudes and feature characteristics derived from dif-
ferent steering directions.

As seen in Fig 2, the IV channels of raw audio data are fed
into the beamformer front-end, which then obtains the K +1 di-
rectional signals. We then extract the usual log-Mel features for
each beamformer direction and concatenate them together. This
concatenated vector constitutes the input of the ASR encoder.

The beamformers used in this work are superdirective
beamformers [16, 17, 18]. A superdirective beamformer is de-
rived by maximizing the directivity factor, or DF. Specifically,
the method minimizes the power output and applies a linear
constraint in order to obtain an undistorted output signal. This
optimization maximizes the directivity index. The K 4 1 beam-
formers are predetermined. At runtime they are realized via
one-dimensional convolutions.

Our ASR model is a Neural Transducer [19, 20, 21, 22].
This well-known end-to-end ASR architecture consists of three
components: an encoder, a prediction network, and a joiner
network. The goal of the transducer model is to produce a
label sequence Y = (yi1,---,yr) of length L, which can
be a sequence of words or word-pieces, from an input se-
quence X = (z1,---,xg) of length S, typically a sequence
of acoustic features like Mel-spectral energies. The encoder
neural network processes the input sequence X and produces
a sequence of acoustic representations, denoted as H"¢ =
(h§™¢, -+, hT*°), of length T', which might differ from S due
to sub-sampling. The prediction neural network acts as an in-
ternal language model or decoder to generate a representation
hdec, where u represents the decoder state. Generally, u de-
pends on the previous output labels yq.,—; = (Yo, " ,Y;—1)»
where yo corresponds to a start of sentence symbol, and [ de-
notes the label index. Lastly, the joiner network takes the output

3523

representations from the encoder and prediction network as in-
put and creates the joint representation h]°,"", where ¢ denotes
the encoder frame index.

What sets our model apart is that we also incorporate serial-
ized output training, or SOT [14, 15]. This is a technique for de-
tecting speaker changes—in our case between the wearer and a
target speaker (other)—as well as for recognizing partially over-
lapping speech. In our SOT implementation, ground-truth tran-
scriptions from multiple speakers are sorted by the end times of
all words. These are then interleaved, where at every speaker
change, a special symbol (>0 or >>1) is inserted. This way,
the model learns to intersperse ASR transcripts with markup to
indicate whether the speech came from self (the wearer of the
glasses) or from other (the conversational partner opposite to
the wearer). Note that compared to [14, 15], the availability of
multiple input channels makes this task significantly easier.

Lastly, our model learns to suppress bystanders’ speech:
The ground truth for training the multi-channel ASR model
includes only the transcripts of the self and other speakers.
Speech of bystanders, that is, speech simulated from directions
other than the target-speaker directions, is included in the train-
ing data as well, but with empty transcripts. This way, the model
learns to ignore cross-talk. Experiments shows that this simple
approach works with almost perfect accuracy.

Like [19], we used the alignment-restricted RNN-T (AR-
RNN-T) loss, which utilizes prior alignment information, such
as forced alignment information from a traditional hybrid
acoustic model, to limit the set of alignments to a valid sub-
set. This results in significant improvements of memory usage
and training speed.

3. Experiments and Results
3.1. Dataset

We conducted experiments using two datasets: the open-source
Librispeech corpus [23], which consists of 960 hours of speech
from audiobooks in the LibriVox project, and an in-house
dataset of de-identified video data publicly shared by Facebook
users. The training and evaluation sets of the in-house video
data consist of 40k and 50 hours, respectively.

To simulate the training data, we generated 100,000 multi-
channel room impulse responses (RIRs) for rooms with sizes
ranging from [5, 5, 2] to [10, 10, 6] meters. We used the ge-
ometry of Aria glasses to simulate multi-channel data. Aria has
7 microphones. We generated the multi-channel signals using
image-source methods (ISM)[24]. To better understand the im-
pact of cross-talk on speech recognition, we generated four dif-
ferent training sets varying the locations of conversation part-
ners and bystanders. Figure 3 provides details on the training
settings. In the V1 configuration, the conversation partners are
located between 1 and 11 o’clock (blue area), and bystanders
are located between 1 and 11 o’clock (red area). The V2 and
V3 settings leave a gap between the simulated partner and by-



stander directions. This is to study whether very close bystander
and partner directions, such as in V1 and V4, might confuse the
model during training due insufficient spatial resolution of the
array.

We generated several test scenarios with different condi-
tions for conversation partners and bystanders. There are three
conversation-partner position sets: 12 o’clock, 11 or 1 o’clock,
and 10 or 2 o’clock. We also varied the bystander placement,
with four ranges: 3 to 5 o’clock, 7 to 9 o’clock, 2 and 10
o’clock, and 5 and 7 o’clock. This simulation resulted in 9
evaluation sets (3 partner conditions combined with 3 bystander
conditions). Each contains 3367 utterances for Librispeech.

Noise from the public noise set was added to the clean au-
dio segments in both the training and test sets, at SNRs rang-
ing from -20 dB to 30 dB relative to the combined audio of
wearer and partner, at intervals of 1 dB. The volume level of
bystander speech, which varies with distance (e.g. roughly 30
dB attenuation at a distance of 4 feet), was randomly selected to
be between approximately 6 and 36 dB, relative to the wearer.
In addition, three overlap ratios between bystanders and main
speakers are investigated: 0%, 50% and 100%. 0% indicates
there is no overlap between bystander and main speakers.

12 12

1

[

V3

Figure 3: Training configuration of spatial positions of the con-
versation partner and bystander. Blue areas represent the part-
ner, while orange area represents the bystander area.

3.2. Baseline systems

The baseline systems used for performance comparison are a
single-channel ASR system and a interchannel phase differ-
ences (IPDs) system. The single-channel system takes the
reference microphone signals (the first microphone) as input.
IPDs [25, 6] can be calculated as follows

ZYZIf A

(n)
1PD "

= ey

where éYf’lf denotes the angle of the complex representation
Y}, with ¢ and f representing time and frequency and (n) is
the index for the microphone pairs. The substation of the phase
signals for a pair of microphone signal, including a target and
a reference microphone, eliminates phase variations inherent in
source signals and hence allows room acoustic characteristics
to be directly captured. The IPD features are further augmented
with magnitude spectra to leverage both spectral and spatial
cues. For the short-term Fourier transform, we use a Hanning
windows of 16 ms and a frame shift of 10 ms. 6 pairs of micro-
phones are selected for IPD, which are (0,1), (0,2), (0,3), (0,4),
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(0,5), (0,6). The total dimension of the input feature after con-
catenation is 129 * (7+6) = 1677.

3.3. Model Setup

The baseline systems and the proposed systems are using the
same model architecture, except for a different input dimen-
sion. For each beamformer direction or raw microphone chan-
nel, we extracted 80-dimensional log-Mel filterbank features.
Input features from multiple directions or channels are con-
catenated. The encoder network’s input layer projects this re-
sulting concatenated feature vector to 128 dimensions. Then,
four consecutive frames are stacked to form a 512 dimensional
vector (reducing the sequence length by 4x). This is followed
by 20 Emformer blocks [26] with § attention heads and 2048-
dimensional feed-forward layers. The RNN-T’s prediction net-
work contains three 512-dimensional LSTM layers with layer
normalization and dropout. Lastly, the encoder and predictor
outputs are both projected to 1024 dimensions and passed to an
additive joiner network, which contains a linear layer with 4096
output BPE units.

We use an Adam optimizer with a tri-stage learning-rate
scheduler. For LibriSpeech, models are trained for 120 epochs,
with a base learning rate of 0.001, a warmup of 10,000 itera-
tions, and forced annealing after 60 epochs. In additon, there is
no external language model is used in our RNN-T model. For
experiments on large-scale in-house data, a similar model archi-
tecture and training hyper-parameters were used, with training
for 15 epochs.

3.4. Results
3.4.1. Beamformer analysis

Figure 4 depicts the beam patterns of the superdirective beam-
former for 4 different directions, as indicated by the blue ar-
rows. While beam patterns vary greatly, the gain is around 1 in
the desired looking directions.

a. Forward b. Left ¢. Backward d. Right

Figure 4: Beam patterns at f = 2 kHz.

3.4.2. Comparison with baseline systems

We will now compare our proposed directional ASR system
(referred to as "D-ASR”) with two baselines. The number of
beams used in the ASR model,m K + 1, was represented by the
numbers in brackets after "D-ASR” - [D-ASR-1], [D-ASR-5],
and [D-ASR-13]. These numbers denote the number of beams
used in the ASR model, with 1" indicating beamformed output
at 12 o’clock direction, ”’5” representing 4 beams for the hor-
izontal plane (at 90-degree increments) plus the self-beam (to
the wearer’s mouth), and 13" representing 12 beams for the
horizontal plane at 30-degree increments plus the self-beam.

Unless otherwise noted, word error rates (WERs) consider
speaker attribution by counting self and other tags like words.
A missing or incorrect speaker tag counts as one error.

First, Table 1 shows that the single beamformed input
system (D-ASR-1) outperforms the single-channel reference-
microphone system (SC-Raw mic) in most cases, by significant



Model Partner [12] Partner [11/1] Partner [10/2]
Cl C2 C3 Cl C2 C3 Cl C2 C3
D-ASR-5 (V1) 12.0 | 129 | 119 | 147 | 152 | 149 | 525 | 532 | 524
D-ASR-5 (V2) 12.0 | 138 | 12.0 | 147 | 16.1 | 147 | 52.7 | 53.9 | 52.6
D-ASR-5 (V3) 12.0 | 498 | 120 | 142 | 51.9 | 13.9 | 145 | 519 | 145
D-ASR-5 (V4) 12.0 | 36.8 | 12.0 | 142 | 385 | 14.1 | 154 | 438 | 152
IPD (V1) 15.0 | 157 | 147 | 159 | 164 | 16.1 | 53.8 | 543 | 53.8
IPD (V2) 149 | 168 | 147 | 152 | 16.8 | 153 | 53.7 | 54.8 | 53.7
IPD (V3) 15.1 | 555 | 149 | 153 | 546 | 15.1 | 15.6 | 549 | 15.7
D-ASR-1 (V1) 16.5 | 262 | 17.1 | 20.6 | 30.2 | 21.8 | 29.0 | 39.5 | 30.1
D-ASR-1 (V2) 172 | 29.0 | 163 | 19.7 | 31.5 | 20.6 | 28.3 | 41.4 | 28.7
D-ASR-1 (V3) 183 | 41.1 | 16.7 | 21.7 | 434 | 20.0 | 25.1 | 46.6 | 22.9
SC-Raw mic (V1) | 41.3 | 42.1 | 409 | 40.9 | 41.6 | 42.1 | 41.3 | 41.1 | 409
SC-Raw mic (V2) | 40.9 | 42.2 | 40.4 | 40.8 | 409 | 41.3 | 40.5 | 40.9 | 40.7
SC-Raw mic (V3) | 41.5 | 43.0 | 40.8 | 42.0 | 42.3 | 424 | 41.8 | 419 | 41.3

Table 1: WERs (%) for the proposed and baseline systems on
Librispeech. C1: bystanders are located at 3 to 5 o’clock and
7 to 9 o’clock. C2: bystanders are located at 10 o’clock and 2
o’clock. C3: bystanders are located at 5 o’clock and 7 o’clock.
Annotation is same to other tables. The overlap ratio is 0%.
margins. Le., using a single directional signal already provides
valuable spatial cues. Compared with the strong IPD baseline
systems, which uses explicit spatial cues, our proposed D-ASR
with 5 directional signals consistently achieves better perfor-
mance, demonstrating the effectiveness of our approach.

We also compared training conditions for different by-
stander locations. D-ASR is sensitive to unseen test conditions,
similar to IPD-based methods. For example, the performance
of D-ASR-5 with V3 training data drops significantly for the
partner at 12 o’clock when bystanders are nearby the 10 and
2 o’clock directions (C2). In the V3 training data, bystanders
are only located at 3 to 9 o’clock, so C2 is an unseen condi-
tion. In contrast, the V4 training condition also includes by-
standers close to the 10 and 2 o’clock directions, which results
in improvements over V3, although the discrimination between
bystander and partner is very narrow at this location.

3.4.3. Impact of the number of beams

We conducted ablation studies to measure the impact of the
number of beams used for model training. Here, we fixed the
model training using V4 configuration. Table 2 contains the re-
sults for Librispeech comparing four such systems. Comparing
D-ASR-5 with D-ASR-1, we see that more beams can reduce
the WER significantly on the conditions that bystanders are far
away from the partners (C1 and C3). When bystanders are close
to the partner (C2), D-ASR-1 performs somewhat better, likely
because the spacial resolution of the beamforming is not suffi-
cient to resolve bystander and partner directions that are very
close. Similar to using 13 beams, we also see an improvement
in the C1 and C3 conditions. Applying volume perturbation
further boosts ASR performance, which should teach the model
to not rely on amplitude differences to discriminate speaker di-
rections but on other special and spectral cues instead.

3.4.4. Impact of overlap ratio,; speaker attribution accuracy

Next, we investigated the impact of performance under differ-
ent overlap conditions. As presented in Table 3, we initially
validated the performance of our D-ASR model under ideal

Partner [1/11]
Model Cl [ C2 ] C3
D-ASR-1 (V&) 211 | 385 | 197
D-ASR-5 (V4) 142 | 385 | 14.1
D-ASR-13 (V4 134 | 418 | 135
D-ASR-13 (V4) + vol. Perturb | 13.3 | 36.7 | 132

Table 2: The impact of the different number beams for the di-
rectional speech recognition. The overlap ratio is 0%.
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Model Over- | Noise | Cross- | Partner [1/11]
lap talk Cl C3
SC-Raw (V1) 0% Y Y 40.9 42.1
D-ASR-13 0% N N 5.5 5.5
(V4) Y N 12.2 12.5
Y Y 12.8 13.0
D-ASR-13 50% N N 5.5 5.5
(V4) Y N 13.2 12.9
Y Y 14.2 14.0
D-ASR-13 100% N N 5.6 5.6
(V4) Y N 14.1 14.3
Y Y 16.0 15.9

Table 3: WER (%) at varying ratios of overlap of cross-talk with
self/other speech.

conditions, i.e., no noise and cross-talk, in which it achieved
around 5.5% on Librispeech test-clean dataset in all cases. At
0% overlap, the cross-talk speech increases the total amount of
speech by approximately 50%—undesired speech that should
not be recognized (with cross-talk disabled, audio length still
increases by 50%, but of silence or noise). The single-channel
model only suppresses some lower-volume cross-talk, while it
decodes its majority as insertion errors, pushing the WERs to
over 40%. Whereas the D-ASR model suppresses cross-talk al-
most perfectly at the lower overlap ratios: At 0% overlap, the
WER increases from 12.2 to 12.8%, 0.6% absolute, corresponds
to only about 1.2% of the cross-talk audio! Accuracy degrades
a bit more at 100% overlap, when bystander speech effectively
becomes background noise.

Let’s use the D-ASR-13 (v4) 0% no cross-talk C3 configu-
ration to look at speaker-attribution accuracy. We split ASR out-
put/ground truth by speaker tags. Now, words attributed to the
wrong speaker become insertions or deletions. After this split,
the resulting WER increases from 12.5% to 12.7%. Hence,
speaker attribution works almost perfectly as well.

3.4.5. Results on large-scale dataset

Finally, we conducted experiments on our large-scale in-house
dataset. As shown in Table 4, we observed similar tendency on
the in-house data. The proposed directional ASR model consis-
tently outperforms the IPD baseline system in all cases.

Partner [12] Partner [11/ 1]
Model T ¢ G C ¢ 3
DASRS (VD) [ 110 110 110 [ 128 131 125
D-ASR-5(V2) | 108 113 108 | 1.1 115 111
D-ASR-5(V3) | 11.1 567 111 | 1.1 599 111
D (VD) - - T 22 230 22
IPD (V2) ] ] - | 23 236 22
IPD (V3) ; ; - | 22 695 221

Table 4: WER (%) on our in-house data, at overlap ratio 0%.

4. Conclusions

This paper has introduced an ASR modeling approach that uses
multi-channel directional input. Besides the usual SNR im-
provement, multi-channel audio is leveraged more directly to
disambiguate speakers from different directions and to suppress
cross-talk. Our RNN-T based model is trained to annotate
speaker changes and ignore bystander speech in an end-to-end
fashion. Comprehensive experiments were conducted for con-
versational ASR with smart glasses using different bystander
and conversational partner conditions. We have demonstrated
that the proposed directional ASR system disambiguates the
wearer’s from the conversation partner’s speech and suppresses
bystander speech (from undesired directions) almost perfectly.
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