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Abstract
Speech recordings in call centers are narrowband and mixed
with various noises. Developing a bandwidth expansion (BWE)
model is important to mitigate the automated speech recognition
(ASR) performance gap between the low and high sampling rate
speech data. To further address the in-the-wild noise in call cen-
ter settings, we propose an Embedding-Polished Wave-U-Net
(EP-WUN) that includes an additional speech quality classifier
to handle the noise and bandwidth expansion of 8k audio si-
multaneously. Our framework shows improved speech quality
metrics on a well-known BWE dataset (Valentini-Botinhao cor-
pus) when comparing to the current state-of-the-art noise-robust
BWE model with 33% fewer parameters. It also achieves an
11.71% word error rate reduction when evaluating on a real-
world interactive voice response system from the E.SUN bank.
Index Terms: Bandwidth expansion, Robust speech represen-
tation learning, Automated speech recognition

1. Introduction
Countless inbound and outbound calls are handled by call cen-
ter agents every day for a variety of purposes. Most of these
calls are recorded as they are valuable assets for the company.
For instance, they can be utilized for agent training [1], precise
telemarketing [2], and better customer service [3]. Given the
large scale nature of call center recordings, sifting through each
call manually is infeasible making ASR technology imperative.
While many sophisticated ASR systems are available, most, if
not all, of them are trained with a high-sampling rate (16k or
44.1k), these systems can not be applied directly to handle the
unique characteristics of conventional telephony systems, i.e.,
the 8k low sampling rate and the real world noise.

Previous works have primarily concentrated on dealing
with the issue of 8k narrowband through BWE. Approaches
of BWE evolve from feature-based methods to model-based
ones, and most current methods focus on reconstructing super-
resolution waveform directly. For feature-based methods,
Fukuda in [4] implicitly imposed narrowband information into
the acoustic feature vector to form a mixed bandwidth feature.
Yu et al. in [5] showed that the average distances and vari-
ances in the mix-band features are consistently smaller than
the wideband ones, which helped improve ASR performance.
For the model-based ones, Mantena in [6] proposed to attach a
bandwidth embedding as a condition vector while learning the
acoustic model . Besides, Heymans added 8k speech data to
perform data augmentation [7], and it improved 8k narrowband
ASR performances. Other recent works began to address this
issue by directly generating the wideband speech waveform us-
ing a a variety of deep learning methods, e.g., deep neural net-
work(DNN) [8, 9, 10], generative adversarial network(GAN)

[11, 12], and neural vocoder [13].
While many of these works have achieved promising BWE

results, most of the existing models ignore the effect of noise.
However, real-world call center recordings are naturally noisy.
There are only a few recent works focusing on noise-robust
BWE; for example, UEE [14] is a joint training framework
that combines BWE and speech enhancement (SE) by cascad-
ing two bi-directional long short-term memory (BLSTM) lay-
ers. Another recent state-of-the-art (SOTA) noise-robust BWE
is MTL-MBE [15]. It is a multi-task framework that simultane-
ously learns to reconstruct the narrowband and wideband clean
signal from the noisy narrowband signal. These two are one
of the few studies that have demonstrated their BWE model’s
robustness in handling noise for 8k speech recordings.

In this work, we propose an Embedding-Polished Wave-
U-Net (EP-WUN), which is a noise-robust BWE network that
enhances a Wave-U-Net backbone BWE module with noise-
robust learning. Specifically, besides expanding waveform
along the temporal and frequency domains, our proposed EP-
WUN is further trained with a modified triplet loss that encour-
ages speech representation clean-up while performing BWE si-
multaneously. We evaluate our noise-robust BWE framework
on the well-known English Valentini-Botinhao corpus [16].
Additionally, we perform in-the-wild ASR decoding tasks by
utilizing our framework for an unseen proprietary real-world
Mandarin Chinese interactive voice response (IVR) recording
dataset gathered internally from the E.SUN bank. In summary,
the overall contributions of our work are:

• We present a novel training method based on representation
cleaning on the embedding space for BWE on 8k speech
recordings.

• This is one of the first BWE work with evaluation carried out
on a real-world call center recordings.

• Our noise-robust BWE not only outperforms the SOTA
model but also requires 33% fewer model parameters.

Our results achieve competitive performances on all speech
quality metrics, and 28.77% and 24.98% word error rate (WER)
for English and Chinese compared to the SOTA MTL-MBE
(38.63% and 36.69%). The following sections are organized
as research methodology, experiment setup, and results, and the
final section is the conclusion.

2. RESEARCH METHODOLOGY
In this section, we will describe our proposed Embedding-
Polished Wave-U-Net (EP − WUN ) for the task of noise-
robust BWE. The overall framework is shown in the left side
of Fig. 1. Our structure is mainly composed of two parts which
are Wave-U-Net (WUN ) and speech-quality classifier (SQC).
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Figure 1: Proposed EP −WUN is composed of WUN and SQC. Robust learning is done by applying the modified triplet loss on
the hidden feature h of SQC, where ha is the anchor, and hp, hn comes from the clean and noisy speech respectively.

WUN is a wav-to-wav model that handles the input speech in
time domain, and SQC is a noisy versus clean speech classifier
which helps distinguish the quality of the speech embedding.
Here, we divide our method into the training stage and the eval-
uation stage.

2.1. Training stage

In our model, the training process is divided into three parts:
WUN pre-training, SQC pre-training, and EP−WUN train-
ing. We first define major symbols used in our work. The input,
denoted as x{c,n}, is the 8k speech signal for the BWE model,
where c and n represents clean and noisy respectively. We use
y{c,n} to be the corresponding 16k target speech signal for the
input x{c,n}, and we use ŷ{c,n} to represent the reconstructed
16k target output.

2.1.1. WUN Pre-Training

We use a conventional WUN [17] as our backbone model that
has been shown to achieve outstanding performances in mul-
tiple speech tasks. Downsampling blocks, upsampling blocks,
middle layers, and skip connections are basic components of
WUN (refer to the right side of Fig. 1). The number of param-
eters in WUN is 1.49M.

In this pre-training stage, we train the WUN by pairing
noise 8k-noise 16k and clean 8k-clean 16k. Here, we define
WUNdown as a downsampling module, and WUNup as an
upsampling module. The loss used in this stage is shown below:

LWUN =

λLwav(y{c,n}, ŷ{c,n}) + LMSTFT (y{c,n}, ŷ{c,n}) (1)

where λ is the weighted parameter between different losses,
Lwav is L1 loss used for time domain signal reconstruction, and
the LMSTFT is L1 multi-resolution short-time Fourier trans-
form loss used for the frequency domain spectrogram recon-
struction. Specifically, we choose the window length from
{240, 600, 1200}, fast Fourier transform (FFT) length from
{512, 1024, 2048}, and hop size from {50, 120, 240} when
calculating MSTFT loss.

2.1.2. SQC Pre-Training

The goal of SQC is to distinguish the quality (noisy versus
clean) of an 8k speech and helps direct the hidden embedding

toward cleaned representation. SQC consists of two layers of
LSTM, followed by pooling layers, linear layers, and softmax
activation (shown in Fig. 1). In this procedure, SQC would
indicate whether the representation (hw = WUNdown(xn,c))
is derived from the clean or noisy 8k speech data. In short,
the SQC is a binary classifier for speech quality (clean versus
noisy) trained with cross-entropy loss. The number of parame-
ters in SQC is 4.09M.

2.1.3. EP-WUN Training

Finally, we combine the WUN and SQC to achieve noise-
robust BWE. The goal is to train a single end-to-end network
that performs wav-to-wav BWE while constraining the interme-
diate hidden representation to move closer to the clean-domain
as indicated by SQC. This is done via a modified triplet loss
term described below.

We leverage the ability of the pre-trained SQC for indicat-
ing whether the embedding is noisy or clean to further impose a
modified triplet loss Lm−trp to force the hidden embedding of
8k speech audio to move toward a cleaned space. Our proposed
EP − WUN can be thought as a wav-to-wav BWE with an
embedded representation cleaning mechanism. The proposed
use of triplet loss is formulated below:

ha = LSTMSQC(WUNdown(x{c,n})) (2)

hc/n = LSTMSQC(WUNfix,down(x{c/n}) (3)

Lm−trp = max{d(ha, hc)− d(ha, hn) + δ, 0} (4)

where only the WUNdown is fine-tuned in this process, and
WUNfix,down is set by the weight from pre-trained WUN . To
clarify the difference, in the original triplet loss definition, the
positive/negative samples are alternated according to the label
of the anchor. In our case, the definition is slightly changed
such that the positive and negative sets are always defined as
clean and noisy speech for any anchor. We take the input sample
through SQC to derive embedding ha as an anchor, and force
it to be close to the clean sample, hc, and to be far from the
noisy sample, hn (equation 4). Note that hc, hn are embeddings
derived from SQC, the margin parameter δ is set as 1, and d is
the L2 distance loss between the representations. After moving
the anchor ha representation to a clean space, we further feed
this representation back to WUNup to generate the bandwidth
expanded signal, ŷ{c}. The process can be written as:
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ŷc = WUNup(ha +WUNdown(x{c,n})) (5)

Therefore, the overall training loss LEP−WUN includes the fol-
lowing terms:

LEP−WUN =

λtLm−trp + λwLwav(yc, ŷc) + LMSTFT (yc, ŷc) (6)

where λt and λw are the weighted parameters between different
losses, Lwav(yc, ŷc) is the time domain L1 loss, and LMSTFT

is the multi-resolutio frequency domain loss.

2.2. Evaluation Stage

In the evaluation stage, once we have the EP −WUN model,
we directly apply the model on 8k speech recordings to recon-
struct the 16k speech data to be decoded by any existing 16k
ASR model. The overall procedure is shown below:

ŷc = EP −WUN(x{c,n}) (7)

ŵ1, ...ŵn = ASR(ŷc) (8)

where ŷc is the retrieved 16k signal and ASR is the speech
recognition model that is trained on 16k speech data, and the
ŵn is the word sequence prediction.

3. EXPERIMENT
3.1. Database

3.1.1. Valentini-Botinhao

The public Valentini-Botinhao dataset is an English corpus con-
sisting of 28/2 speakers for the training/testing set. The training
set has 40 noisy conditions, and the testing set has another 20
different noisy conditions. We downsample the utterances to
16k as our training target yc from the original 48k. For vali-
dation, we split 2 speakers from the training set. In our setup,
we have an 8 hours 48 minutes training set, a 34 minutes test-
ing set, and a 38 minutes validation set, which contains 108030,
824, 742 pieces of speech respectively. This database is used
for both speech quality and ASR performance evaluation.

3.1.2. Formosa Speech in the Wild

Formosa Speech in the Wild (FSW) [20] is a large-scale Tai-
wanese Mandarin corpus that is collected from broadcast ra-
dio. There are around 3000 hours of spontaneous speech data
which include the multi-genre shows. Besides, all the audios are
sampled with 16kHz and divided into clean and other (noisy)
sets. The overall dataset is split into 17 volumes with man-
ual transcription. We randomly sample FSW to generate our
training set and validation set to align with the size of Valentini-
Botinhao. This dataset is used only for training BWE models
and evaluation of ASR. The training set and validation set used
is approximately 11 and 1 hours with 1700 and 130 pieces of
speech.

3.1.3. E.SUN-IVR-cust

Our in-the-wild ASR test set is in Mandarin Chinese, called
ESUN-IVR-cust. It was collected by the in-company IVR sys-
tem in the call center of E.SUN bank. It contains conversations
of real customers talking to the IVR chatbot about their calling
intentions. These calls are recorded with 8k sampling rate. Note

that each recording only contains the voice of a single customer,
and it’s content relates to financial services without any personal
information, which has been verified several times by company
employees. ESUN-IVR-cust has 1,228 recordings, whose max,
min, and average durations are 42.72s, 3.02s, and 14.769s, re-
spectively.

3.2. Experimental setup

In the following, we conduct the experiments on both English
and Mandarin corpus. For English, the model is trained and
evaluated on Valentini-Botinhao. For Mandarin, the model is
trained on FSW and evaluated on the real-world E.SUN-IVR-
cust. In both experiments, the training speech is cut into roughly
1 second segment, which follows the settings in Wave-U-Net
[21]. All the models are optimized by Adam optimizer with
a learning rate of 2e-4. In each stage, WUN , SQC, and
EP − WUN are trained with batch size {256, 128, 128} for
{500, 200, 500} epochs respectively. λ, λt, and λw are set to
{100, 8, 800} respectively. The models and hyperparameters in
each stage are selected by the validation performance. Network
weights are randomly initialized. Our framework is trained on
NVIDIA A100 80 GB. For each stage, the memory cost are ap-
proximately {1.98 × 105, 6.01 × 104, 2.24 × 105} MBs, and
the time cost are about {2, 1, 3} days respectively. The source
code is also available on GitHub 1.

3.3. Baseline models

We include various baseline robust BWE frameworks as our
comparison models, and each work is briefly introduced in the
description. To compare fairly, all the experiments are evalu-
ated using the common SE and BWE metrics. For perceptual
quality, PESQ [22] is measured with a reference signal. STOI
[23] represents speech intelligibility, and log spectral distance
(LSD) measures the spectral reconstruction. For the predicted
mean opinion score (MOS) of speech quality, we compute the
CSIG, CBAK, and COVL scores [24]. Note that only for the
value of LSD, the lower is better, otherwise the higher is better.
• DNN A deep neural network that estimates the spectral map-

ping function from narrowband to wideband.
• DRN A time domain U-Net structured deep residual network

for audio super-resolution.
• WUN A classic U-Net network that is composed of repeated

downsampling, upsampling, and skip connections to generate
the wideband wave files.

• UEE An unified framework for both SE and BWE, which
combines Griffin-Lim algorithm with a jointly trained model
to reconstruct clean wideband speech.

• MTL-MBE An end-to-end time-domain framework for
noise-robust BWE, which jointly optimizes mask-based SE
and BWE modules with multitask learning.

• EP-WUN - Lm−trp EP −WUN trained without the mod-
ified triplet loss term in the third stage.

4. RESULTS
4.1. Baseline comparison

All the results are summarized in Table 1, and we also indicate
the training set conditions. Conventionally, BWE models were
trained with clean speech only. Compared to conventional ones

1https://github.com/alexlinander/EP WUN
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Table 1: Results of all metrics among different models are presented in this table, including the training condition. The upper arrow
represents that higher is better, and vice versa. EP −WUN − Lm−trp here stands for EP −WUN without modified triplet loss.
Note that all results are evaluated under the noisy Valetini testset. ∗∗ and ∗ indicate that p-value <0.001 and <0.05 respectively when
compared to WUN.

Model Training Set #Params PESQ↑ STOI↑ LSD↓ CSIG↑ CBAK↑ COVL↑
DNN [18] Clean 13.38M 1.79 0.92 2.8 2.45 2.32 2.09
DRN [19] Clean 56.41M 1.74 0.92 2.97 1.18 1.97 1.38
WUN Clean 1.49M 1.96 0.91 1.90 1.51 2.2 1.7
UEE [14] Clean + Noisy 22.42M 2.23 0.93 2.72 2.27 2.39 2.17
MTL-MBE [15] Clean + Noisy 6.82M 2.55 0.94 2.29 2.64 3.21 2.46
EP-WUN - Lm−trp Clean + Noisy 4.58M 2.15∗∗ 0.92 1.23∗∗ 3.42∗∗ 2.98∗∗ 2.78∗∗

EP-WUN Clean + Noisy 4.58M 2.25∗∗ 0.92∗ 1.23∗∗ 3.50∗∗ 2.94∗∗ 2.86∗∗

(DNN, DRN, WUN), our model outperforms in all the metrics,
especially for CSIG (3.50), CBAK (2.94), and COVL (2.86)
which are sensitive to noise. The result shows that traditional
BWE models have limited capability in handling noisy speech.

While compared to the latest SOTA, MTL-MBE, our pro-
posed EP − WUN shows better performance on CSIG (3.50
v.s 2.64), COVL (2.86 v.s 2.46), and especially on LSD (1.23
v.s 2.29). The significant reduction (-1.06) in LSD also meets
our expectations due to the MSTFT loss for spectral reconstruc-
tion. However, we find that metrics like PESQ (2.55), STOI
(0.92), and CBAK (2.94) are slightly lower than MTL-MBE,
and the reason might be the trade-off between model size and
performance. It is worth mentioning that EP −WUN not only
achieves competitive speech quality metrics (some are even bet-
ter) when compared to the current best MTL-MBE but also is
a very light model. EP − WUN reduces approximately 80%
(22.42M → 4.58M ) and 33% (6.82M → 4.58M ) of model
parameters as compared to UEE and MTL-MBE, respectively.

4.2. Ablation study

To verify the effectiveness of our proposed modified triplet
loss, we further conducted an ablation study to compare the
performance of EP − WUN with and without the loss term
during training. As shown in Table 1, we first look into the
PESQ scores, the model with modified triplet loss (2.25) ob-
tains 0.1 higher perceptual quality than the without one. For
the commonly used objective quality measures for SE (CSIG,
CBAK, and COVL), the model that incorporates the modified
triplet loss term achieves higher performance on CSIG(3.50)
and COVL(2.86), but slightly lower performance on CBAK.

Overall, it appears that the modified triplet loss term pro-
vided additional benefit to the model in terms of cleaning up the
noisy embedding. This has resulted in improved performance
across different speech quality metrics.

4.3. ASR performance evaluation

We further conduct ASR evaluation that is a more critical task
in deploying such a technology in call-center setting. To fairly
compare the ASR decoding performance, we utilize the stan-
dard ASRmodel with fglarge language model from Kaldi [25]
that is pre-trained on Librispeech [26] for English, and the pro-
prietary ASR model from E.SUN bank that is trained on multi-
ple Chinese Corpora for Mandarin. The results are presented in
Table 2, and the evaluation metrics are in word error rate (WER)
and character error rate (CER).

From Table 2, the performance of our proposed EP −
WUN reduces approximately 10% WER than the MTL-MBE
in both languages (E : 38.63% → 28.77%, M : 36.69% →

Table 2: ASR performance comparison

English Mandarin
WER CER WER CER

MTL-MBE 38.63 24.59 36.69 24.21
EP-WUN 28.77 17.57 24.98 13.34

24.98%). Note that the testing set of Mandarin is the E.SUN-
IVR-cust that is completely unseen during the training of our
Chinese EP − WUN . It is quite promising to see our pro-
posed model still achieves an outstanding performance in this
challenging setting and implicates a higher robustness of EP −
WUN as compared to MTL-MBE. Another interesting obser-
vation is that the speech quality metrics in Table 1 do not di-
rectly correspond to the performance of the ASR result, i.e.,
higher PESQ/STOI does not translate for better WER. From
the observed improved ASR results when using our proposed
EP − WUN , we hypothesize that LSD might be the infor-
mative speech quality metric for ASR performance. A lower
LSD measures indicates a better spectral reconstruction. A bet-
ter spectral reconstruction during BWE potentially benefits the
downstream ASR model, since most ASR relies on spectral in-
formation as input.

5. Conclusions
In this paper, we proposed an end-to-end network modified
from the WUN to a noise-robust WUN to handle BWE for
8k speech recordings. Specifically, we imposed a modified
triplet loss that adapts the intermediate WUN representation
toward a clean space. This representation cleaning helps the
conventional WUN BWE to handle noisy conditions on em-
bedding domain. Our experiments showed the usefulness of the
proposed loss term and consistent performance improvement
across multiple speech quality metrics, and our method better
translated to the ASR performances as compared to the current
noise-robust SOTA in two different languages.

According to the indirect relationship between speech qual-
ity metrics and ASR results, we plan to design detailed ex-
periments and analyses to demonstrate the hypothesis that the
spectral-related metric is more feasible for ASR performance.
A limitation of the current work is that we only consider the ad-
ditive noise. Hence, to further extend the generalizability of our
work, we would introduce other distortions such as room im-
pulse response, reverberance, and clipping to investigate how
the distortion type and intensity (SNR) affect the robustness of
the model, especially in the scenario of call center 8k record-
ings.

5110



6. References
[1] O. Amir, E. Kamar, A. Kolobov, and B. Grosz, “Interactive teach-

ing strategies for agent training,” in In Proceedings of IJCAI 2016,
2016.

[2] C. S. T. Koumétio, W. Cherif, and S. Hassan, “Optimizing the pre-
diction of telemarketing target calls by a classification technique,”
in 2018 6th International Conference on Wireless Networks and
Mobile Communications (WINCOM). IEEE, 2018, pp. 1–6.

[3] G. Mishne, D. Carmel, R. Hoory, A. Roytman, and A. Soffer,
“Automatic analysis of call-center conversations,” in Proceedings
of the 14th ACM international conference on Information and
knowledge management, 2005, pp. 453–459.

[4] T. Fukuda and S. Thomas, “Mixed bandwidth acoustic mod-
eling leveraging knowledge distillation,” in 2019 IEEE Auto-
matic Speech Recognition and Understanding Workshop (ASRU).
IEEE, 2019, pp. 509–515.

[5] D. Yu, M. L. Seltzer, J. Li, J.-T. Huang, and F. Seide, “Feature
learning in deep neural networks-studies on speech recognition
tasks,” arXiv preprint arXiv:1301.3605, 2013.

[6] G. Mantena, O. Kalinli, O. Abdel-Hamid, and D. McAllaster,
“Bandwidth embeddings for mixed-bandwidth speech recogni-
tion,” arXiv preprint arXiv:1909.02667, 2019.

[7] W. Heymans, M. H. Davel, and C. v. Heerden, “Multi-style train-
ing for south african call centre audio,” in Southern African Con-
ference for Artificial Intelligence Research. Springer, 2021, pp.
111–124.

[8] S. Sulun and M. E. Davies, “On filter generalization for music
bandwidth extension using deep neural networks,” IEEE Journal
of Selected Topics in Signal Processing, vol. 15, no. 1, pp. 132–
142, 2020.

[9] J. Abel, M. Strake, and T. Fingscheidt, “A simple cepstral domain
dnn approach to artificial speech bandwidth extension,” in 2018
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2018, pp. 5469–5473.

[10] H. Yamamoto, K. A. Lee, K. Okabe, and T. Koshinaka, “Speaker
augmentation and bandwidth extension for deep speaker embed-
ding.” in Interspeech, 2019, pp. 406–410.
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