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Abstract

Developing effective spoken language pro-
cessing systems for low-resource languages poses
several challenges due to the lack of parallel
data and limited resources for fine-tuning mod-
els. In this work, we target on improving upon
both text classification and translation of Nigerian
Pidgin (Naija) by collecting a large-scale paral-
lel English-Pidgin corpus and further propose a
framework of cross-lingual adaptive training that
includes both continual and task adaptive train-
ing so as to adapt a base pre-trained model to
low-resource languages. Our studies show that
English pre-trained language models serve as a
stronger prior than multilingual language models
on English-Pidgin tasks with up to 2.38 BLEU
improvements; and demonstrate that augmenting
orthographic data and using task adaptive train-
ing with back-translation can have a significant
impact on model performance.

Index Terms: spoken language understanding, low-resource
machine translation, low-resource language

1. Introduction

Over the past few years, there has been an increasing in-
terest in developing spoken language processing systems for
low-resource languages such as the Nigerian Pidgin (Naija) [1].
With a population of 75 million people in Nigeria, Nigerian Pid-
gin is a low-resource language that lacks sufficient data for spo-
ken language processing tasks. Consequently, models tend to
underperform when it comes to critical tasks, such as sentiment
analysis [2] and machine translation [3]. Additionally, the or-
thographic variation of low-resource languages presents a chal-
lenge for language processing models, which can be addressed
by collecting diverse datasets and performing data augmenta-
tion using the target language lexicon [4, 5, 6]. The absence of
parallel Pidgin data creates a considerable obstacle to training
neural models with a high number of parameters. It also poses
difficulties for fine-tuning pre-trained models on the tasks in-
volving Pidgin language with limited resources, as seen in spo-
ken machine translation and text classification [7, 8, 9].

In this paper, we mitigate the issues of data scarcity by col-
lecting and releasing a large-scale parallel English-Pidgin cor-
pus (Section 2). English being the lexifier of Pidgin proves to
be a useful high resource language for pivoting Nigerian Pidgin

∗ Equal contribution.

to other languages [10]. Thus, we use this English-Pidgin par-
allel dataset to train language models. Prior work proposed that
using multilingual models can benefit low-resource language
settings [11]. However, fine-tuning existing models [12] for
specific tasks can be challenging due to their large number of
parameters and sensitivity to parameter values. Thus, to more
effectively leverage existing pre-trained models, we introduce a
cross-lingual adaptive framework which involves two training
procedures consisting of continual adaptive training and task
adaptive training with back-translation. Our approach is de-
signed to adapt a base model to a new language, making it more
effective for low-resource languages.

To this end, we introduce a cross-lingual adaptation frame-
work for fine-tuning existing models to Nigerian Pidgin [12, 13]
(Section 3). Specifically, we perform continual and task adap-
tation by continually pre-training language models for Naija,
and then fine-tuning the models [14, 15] for the downstream
tasks. In our analysis, presented in Section 4, we found that the
English-based model is superior to the multilingual one, indi-
cating the importance of training on data specific to the target
language. Additionally, we found that using task adaptive train-
ing provides a significant impact on model performance in the
low-data setting. Our results suggest that cross-lingual adaptive
training is a promising approach for building effective spoken
language systems for low-resource languages2.

Our main contributions are as follows:
• We release the first large-scale English-Pidgin dataset3to our

knowledge, which consists of 29.73K sentence pairs.
• Using the collected corpus, we trained a baseline machine

translation model, and release a corpus with 5 million syn-
thetic sentence pairs generated using this system. We further
improve upon this translation model with task adaptive train-
ing [16], and demonstrate a significant BLEU improvement
of 2.28 and 1.69 for Pidgin-English and English-Pidgin re-
spectively over the baseline model.

• We show that the English-based pre-trained model (T5) [12]
outperforms its multilingual variant (MT5) [17] by 2.38
BLEU in English-to-Pidgin translation, demonstrating the su-
periority of English models over multilingual one on English-
Pidigin and Pidgin-English translations.

2. Corpus Collection
While there have been several efforts to create datasets for Pid-
gin [18, 19], the language still lacks a sufficiently sized dataset

2https://github.com/muhammed-saeed/CLaT.
3We release the English-Pidgin dataset and 5 million syn-

thetic parallel corpus at https://drive.google.com/file/
d/1GOi0h5yU9XPZFRDYCa-hjRzf_Nx_uRE1/view
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Figure 1: Overview of the framework for low-resource sentiment classification and translation in Pidgin language: (1) Continual
adaptive training: We consider a base model M and a set of in-domain data xdomain in the target language. We then train M with
MLM objective which enables a base model to adapt to a new language domain. (2) Task adaptive training: Starting from the observed
sequence in the source language, the translation model synthesizes an inference in the target language creating the pseudo sentence
pair. We construct a bi-directional back-translation by involving the forward and reverse translations. Next, the combined synthetic
data serves as a supplementary task for the base model which enables the language model to adapt to more complex tasks via supervised
task training.

Table 1: Overview of Pidgin datasets. EN. indicate English
language and PG. for Pidgin language. Data included in the
corpus, along with their size in a number of sentences.

Corpus Language |Train| Domain

PARALLEL

Bible EN., PG. 29, 737 religious
JW300 [18] EN., PG. 20, 218 religious
Naija Treebank [19] EN., PG. 9, 240 misc.

MONOLINGUAL

NaijaSenti [2] PG. 8, 524 social media
Afri-BERTa [20] PG. 176, 843 news, misc.
BBC Pidgin PG. 4, 147 news
ASR [21] PG. 7, 958 news
PidginUNMT [22] PG. 5, 397 news
IWSLT’15 [23] EN. 143, 609 wiki., misc.
WMT14-En [23] EN. 4, 468, 840 news

for application in machine translation models. To address this
issue, we combine and enrich various parallel and monolingual
texts and datasets to generate a high-quality parallel dataset.
The Nigerian Pidgin corpus collection includes six resources:
(1) The Holy Bible, where each verse in English was mapped to
its corresponding verse in Pidgin, resulting in 29, 737 parallel
sentences4. A limited number of chapters required manual pro-
cessing to ensure their quality. (2) JW300 corpus, which con-
tains texts from two religious magazines covering various top-
ics. (3) The Naija Treebank, which is a parallel corpus of tran-
scribed spoken Pidgin text with English translations. (4) The
NaijaSenti corpus, which consists of 21, 017 crawled tweets in
Pidgin and three additional Nigerian languages. (5) The Pidgin
subset of the Afri-BERTa dataset, which consists of 176K Pid-
gin sentences, and Pidgin text from 17K Pidgin articles from
BBC Pidgin, ASR, and PidginUNMT. (6) 5 million synthetic
sentence pairs in English-Pidgin, which were generated from
the ISWLT’15 and WMT14 datasets and the Pidgin sentences
in the monolingual corpus. Table 1 presents the overview of
collected datasets included in the current study along with their
respective size.

4We utilize the edition provided by Wycliffe Bible Translators, Inc.

Table 2: Types of orthographic variation in Nigerian Pidgin.

Type Subtype Example

Alternation c / k carry - karry
a / o call - coll

Conversion ou / a our - awa
ou / o your - yor

Transcription bl / bol trouble - trobol
er / a whether - weda

Deletion initial he - e
medial different - difren

Orthographic analysis. Due to the lack of a commonly ac-
cepted standard orthography in Nigerian Pidgin, we observe
various forms of orthographic variation in the data. The data
is characterized by both intra-textual variation (i.e. variation
within texts from the same source) and inter-textual variation
(i.e. between different sources). We identify four main classes
of systematic variations that occur in the data: (I) alternation
between similar sounds; (II) conversion of digraphs into a sin-
gle letter or alternate digraphs; (III) phonetic transcription of
(blended) letter pairings; and (IV) deletion of silent letters. Ta-
ble 2 presents examples of each of these classes.5

These variations all have phonetic origins. For example, the
alternation between “c” and “k” can be attributed to both con-
sonants being ejective, and the conversion of “ee” to “i” can be
attributed to both vowels having similar sounds in the Pidgin
pronunciation of certain words. As such, we address the in-
consistent input by collecting diverse datasets, highlighting the
significance of our released data.

3. Cross-Lingual Adaptive Training
Considering the challenges posed by orthographic variations
and the scarcity of labeled data for developing performant spo-
ken language processing systems, we introduce two supplemen-
tary training approaches—adapting the model to the new lan-

5Note that the different datasets adhere to different orthographies –
some aim to stay close to English spellings and others aim for phonetic
spellings. Both the English spellings and the variations, therefore, occur
in our data.
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guage and task before fine-tuning on downstream tasks—that
can be utilized to benchmark and enhance the performance
of low-resource Pidgin sentiment classification and translation
tasks: (1) CAT: Continual Adaptive Taining and (2) TAT: Task
Adaptive Taining.
Continual adaptive training. Given the limited availability of
labeled Pidgin data, fine-tuning the large number of weights in
pre-trained language models (PLMs) is challenging. To this
end, we transfer the knowledge about one language absorbed
in the weights to the target language by continually adapting
the model to a new language via the unlabeled Pidgin corpus.
The Continual Adaptive Training (CAT) provides supplemen-
tary training for the base model to transfer to a specific lan-
guage domain and thus improves the model’s performance on
the downstream task. Figure 1 depicts the training phase where
the base model M conducts language adaptation via data as-
suming from the same domain, thus building an adapted model
specialized in a new language. More specifically, an English-
based MEnglish is adapted to Pidgin language using large-scale
unlabeled data, resulting in a language-specific MPidgin. Sub-
sequently, we fine-tuned this model for the target tasks.
Task adaptive training. To enhance the model’s ability to
tackle more intricate tasks, we further introduce Task Adaptive
Training (TAT) which allows the model to adapt to the trans-
lation task through supervised learning. Our task training in-
volves combining the two sets of synthetic data that possess
shared characteristics across both source and target languages
for M . To create synthetic data, TAT employs back-translation,
a technique that has proven effective in low-resource ma-
chine translation scenarios. By leveraging bi-directional back-
translation data in our approach, we augment the volume of
task-specific training data accessible to the model which can
potentially enhance the performance on more complex transla-
tion tasks. Specifically, we obtain a synthetic dataset D′

x→y′ =

{(x, y′)|x ∈ D} via back-translation where the pseudo transla-
tion y′ was generated according to the sequence x in the source
language. We combine two translation directions as the bi-
directional back-translation data DBT = D′

x→y′ ∪D′
y→x′ .

4. Main Results
General setup. We closely followed the training procedure in
transformers [24]. We trained the transformer translation mod-
els using Fairseq [25]. For experiments with T5 [12] and MT5
[26], we use Huggingface [27]. We consider BASE for all the
checkpoints of the models.

4.1. Sentiment Classification

Data. We derived the low-resource dataset from Nai-
jaSenti [2], which performs sentiment analysis with 3 classes
(6.7K/0.6K/1.2K)6. We report F1 score.
Setup. We leverage ROBERTA [14] and BERT [15] in base
versions. We added INIT baselines where the weights of mod-
els are randomly initialized and refer fine-tuning as FT which
directly transfers the pre-trained language model to Pidgin lan-
guage. When performing CAT we continually train ROBERTA
and BERT on monolingual Pidgin corpus with masked lan-
guage modeling objective following the instruction in [28], fol-
lowed by fine-tuning on multi-class classification (“positive”,
“negative”, “neutral”) task.
CAT improves Pidgin comprehension. As shown in Table 3,
BERT and ROBERTA with continual adaptive training have

6We obtained the portion of the dataset from the authors.

both improved FT after the additional pre-training epochs on
Pidgin data, resulting in +1 and +2.4 point improvement in
F1. Furthermore, CAT enables significant performance gains
compared to INIT by +8.9 and +14.1 points of F1. The reason
for this can be attributed to poor initialization from INIT where
fine-tunes a high number of randomly initialized parameters is
challenging, while pre-training and additional adaptive training
enable the acquisition of a highly informative language prior to
the downstream task.

Table 3: Results of sentiment classification.

Model Type Init FT CAT

BERT 71.8 79.7 80.7
RoBERTa 68.4 80.1 82.5

Table 4: Results on JW300 translation benchmark with
data augmentation (DATA AUG.) and task adaptive training
(TAT).

English-Pidgin Pidgin-English

Word-level

JW300 [3] 17.73 24.67
DATA AUG. 23.87 22.61

BPE

JW300 [3] 24.29 13
DATA AUG. 30.74 28.76
DATA AUG.+TAT 32.43 31.04

4.2. English-Pidgin Translation

Data. We use JW300 translation benchmark [3]. The baseline
model uses the JW300 parallel English-Pidgin dataset only. For
augmented data, we consider BIBLE which consists of 29K [3].
All models are evaluated on the test set using BLEU score.
Setup. To facilitate a direct comparison with the Pidgin trans-
lation benchmark on JW300 [3], we use the identical model
architectures for the baselines. The word-level model consists
of 4-4 encoder-decoder layers and 10 heads with an embed-
ding size of 300, while BPE model has 6-6 layers, 4 heads,
and an embedding size of 256. We performed shared embed-
ding and the shared vocabulary of size 4000. We refer to DATA
AUGMENTATION and DATA AUG.+TAT as the model with data
augmentation from BIBLE and the model conducting task train-
ing on the bi-directional noisy data via back-translation. We
exploited back-translation (BT) to produce 430K synthetic par-
allel sentences from our collected monolingual Pidgin data for
TAT. We also release the generated 5 million parallel sentences
from the ISWLT15 and WMT14 datasets.
Data augmentation improves performance. Table 4 demon-
strates that BPE model with data augmentation significantly im-
proves the baselines by 6.45 and 15.76 BLEU points in both
translation directions. For word-level models, augmentation
leads to an increase in the BLEU score by 6.14, while the score
for Pidgin-to-English translation decreases by 2.06 points. We
analyzed the dataset and the model in order to uncover the rea-
son for this decrease, and we found that the Bible dataset intro-
duces a lot of orthographic variation when text is segmented at
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the word-level while BPE enables sharing more semantic units.

Table 5: Results on JW300 translation benchmark using T5
and MT5.

Model Type English-Pidgin Pidgin-English

JW300, BIBLE
MT5 (BASE) 33.78 32.4
T5 (BASE) 36.16 33.22

ALL
MT5 (BASE) 33.92 32.75
T5 (BASE) 36.04 34.02

ALL+TAT
T5 (BASE) 36.35 34.04

TAT with back-translation yields further improvement. As
the investigation of TAT’s effectiveness, we generated corre-
sponding parallel sentences by using monolingual Pidgin data
with the T5 for 3 epochs of training. Table 4 shows that TAT
further improve upon the translation models with the +2.28
and +1.69 BLEU improvement for Pidgin-English and English-
Pidgin respectively. This indicates that task adaptive training
with back-translation training provides a better initialization for
machine translation tasks.

4.3. Further Analysis

English-based model is superior to multilingual models. To
validate the hypothesis of the transferability from the English
monolingual model and multilingual counterpart for Pidgin lan-
guage, we compare the T5 where the encoder-decoder is exten-
sively trained on English corpus and the multilingual variant
MT5 that was pre-trained on new Common Crawl datasets con-
verting 101 languages. To ensure the fine-tuning of T5 vari-
ation models converges smoothly, we train both the base ver-
sion of T5 and MT5 in the DATA AUG. setting using JW300
and BIBLE. Additionally, we employed ALL the parallel cor-
pus, which consists of BIBLE, JW300, and TREEBANK. Table
5 demonstrates that T5 based solely on the English language
outperforms its multilingual counterparts in various scenarios
which confirms our hypothesis. We observed a BLEU improve-
ment of +2.38 and +2.12 for both data settings in English-
Pidgin translation, while the improvement was +0.82 and +1.27
points in Pidgin-English translation. We concluded that the
English-based model is superior to the multilingual one. More-
over, despite using more training data during training, TAT still
slightly improves upon T5 baselines. Next, we delve deeper
into the potential of task adaptation in improving the adaptabil-
ity of the base model when faced with limited labeled data.
TAT significantly improves performance in low-data setting.
We compare the model with task adaptation stage T5+TAT and
the baseline T5 to investigate the impact of task adaptation in
low-data scenarios. We used four subsets randomly sampled
from the original training splits (20%, 40%, 60%, and 80%) in
addition to the full training set. The experimental setting was
consistent with that used for English-based T5. Figure 2 shows
that T5+TAT substantially outperforms the baselines across 5
sample sizes. We observed that employing TaT obtain particu-
larly strong performance by +3.48 and +2.64 BLEU improve-
ment for Pidgin-English and English-Pidgin respectively when
only 20% of the data is available for training. Further, incor-
porating supervised task training into the model shows a steady

20 40 60 80 100
Sample size (%)

28

30

32

34

36

BL
EU

(a) English-Pidgin

T5+TAT
T5

20 40 60 80 100
Sample size (%)

29

30

31

32

33

34

BL
EU

(b) Pidgin-English

T5+TAT
T5

Figure 2: BLEU scores on 20%, 40%, 60%, 80% of sample
size and full sample size of (a) English-Pidgin and (b) Pidgin-
English translation tasks using T5+TAT framework.

increase across 5 training splits while the performances of the
baseline are sensible to the sample size. This indicates the
T5+TAT acquired the orthographic information from the task
adaptation stage. Thus, the T5+TAT is capable of achieving
high performance with less labeled data. The findings suggest
that a robust initialization of the language model is essential for
performing well in scenarios where data availability is limited,
which is often the case in low-resource machine translation ap-
plications. Overall, these results highlight the potential value of
incorporating TAT into models and suggest avenues for further
research into optimizing models for limited data scenarios.

5. Conclusion and Future Works
In this research, we developed an effective spoken language
processing framework for Pidgin language text, a low-resource
language. We collected the largest parallel English-Pidgin cor-
pus, performed large-scale data augmentation, and proposed a
framework for cross-lingual adaptive training. Our studies show
that the approach outperforms multilingual models and signif-
icantly improves model performance. Our results suggest that
cross-lingual adaptive training is a promising approach for spo-
ken language processing systems in low-resource language. For
future work, we aim to improve upon the adaptation techniques
by better leveraging the English-based PLMs, and making the
finetuning process more parameter-efficient for low-resource
scenarios.
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