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1 Inria Grenoble Rhône-Alpes, Univ. Grenoble Alpes, France
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Abstract
This work builds on a previous work on unsupervised
speech enhancement using a dynamical variational autoencoder
(DVAE) as the clean speech model and non-negative matrix fac-
torization (NMF) as the noise model. We propose to replace
the NMF noise model with a deep dynamical generative model
(DDGM) depending either on the DVAE latent variables, or on
the noisy observations, or on both. This DDGM can be trained
in three configurations: noise-agnostic, noise-dependent and
noise adaptation after noise-dependent training. Experimen-
tal results show that the proposed method achieves competitive
performance compared to state-of-the-art unsupervised speech
enhancement methods, while the noise-dependent training con-
figuration yields a much more time-efficient inference process.
Index Terms: Unsupervised speech enhancement, dynamical
variational autoencoders, deep dynamical generative model.

1. Introduction
Speech enhancement is a fundamental task of speech process-
ing that aims at recovering the clean speech signal from a noisy
audio recording [1, 2]. In recent years, methods based on deep
neural networks (DNNs) have greatly advanced research in this
field. The most widely-used approach is a direct supervised
mapping from the noisy speech signal to either the clean speech
target or a denoising mask, see a review in [3]. While this ap-
proach has shown impressive results, it also has limitations:
it requires a huge amount of paired noisy-clean speech data
for training and can show poor generalization to noise types
and acoustic conditions unseen during training. Another type
of supervised method resort to generative adversarial networks
(GANs) to learn a conditional distribution of the clean speech
signal given the noisy speech [4, 5, 6]. Recently, methods based
on diffusion models were proposed in, e.g., [7, 8]. A diffu-
sion model transforms a clean signal into a noisy one by adding
noise step by step, and speech enhancement is obtained by ap-
plying the inverse diffusion process conditioned on the input
noisy speech signal. These methods show good generalization
capability, but still require a large amount of paired data for
training and are quite slow at inference.

Unsupervised speech enhancement methods were recently
developed to improve the performance of models on unseen
noise types. Here, the models do not use parallel clean-noisy
data for training. Instead, they use either non-parallel noisy-
clean data (i.e., the clean and noisy samples do not correspond)
[9, 10], or clean data only [11, 12, 13], or noisy data only
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[14, 15, 16, 17]. Unsupervised speech enhancement methods
can be further divided into noise-dependent (ND) and noise-
agnostic (NA) methods [13]. ND methods use noise or noisy
speech training samples to learn some noise characteristics. In
contrast, NA methods only use clean speech signals for train-
ing and the noise characteristics are estimated at test time for
each noisy speech sequence to process. A typical unsupervised
NA approach uses a pre-trained variational autoencoder (VAE)
as a prior distribution of the clean speech signal and a non-
negative matrix factorization (NMF) model for the noise vari-
ance [11, 12, 18, 19]. The NMF parameters and the VAE latent
vector are estimated at test time from the noisy signal and com-
bined to build a denoising Wiener filter. Further developments
in this general line were proposed in, e.g., [20, 21, 22, 23].

Recently, [13] proposed to replace the VAE by a dynam-
ical variational autoencoder (DVAE) [24, 25], yielding better
clean speech modeling by considering the temporal dependen-
cies across successive spectrogram frames. The algorithm pro-
posed in [13] was shown to achieve very competitive perfor-
mance even when compared to supervised approaches. How-
ever, this algorithm has two main drawbacks. First, the NMF
may be a too simple model for many real-world noise signals,
which are poorly described in the spectrogram domain as a non-
negative linear combination of a few spectral templates. Sec-
ond, at test time, the inference algorithm, which must be run on
each noisy sequence independently, is very time-consuming.

In this work, we aim at both increasing the modeling power
of the noise model and accelerating the inference process. To
this aim, we build on [13] and propose to replace the NMF
noise model with a deep dynamical generative model (DDGM),
which is a general class of dynamical models for the generation
of sequential data based on DNNs.1 We implement and test the
DDGM noise model with dependencies either on: the DVAE
latent variables (LV), or the noisy observations (NO), or both
(NOLV). Moreover, these three variants are implemented and
tested in both ND (using a large noisy speech dataset) or NA
configurations. Even further, the models trained in ND configu-
ration can then be fine-tuned on each noisy speech test sequence
to get adapted to specific noise types in the test set (i.e., ND
followed by noise adaptation). Experimental results show that
the proposed method obtains performance that is comparable to
that of [13], while in the ND configuration, it requires much less
computation time during inference.

2. Proposed method
In this section, we present our unsupervised speech enhance-
ment method using DDGM-based speech and noise models.

1Note that the DVAE used for clean speech modeling also belongs
to the DDGM family, hence the paper title.
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Figure 1: Schematic view of the proposed speech enhancement method.

2.1. Clean speech modeling with an RVAE

We work in the short-time Fourier transform (STFT) domain.
Let s1:T = {st}Tt=1 ∈ CF×T denote the STFT spectrogram
of the clean speech. Each vector st = {st,f}Ff=1 ∈ CF is
the short-time spectrum at time frame t, and f denotes the fre-
quency bin. Let z1:T ∈ RL×T denote the associated latent
vector sequence, with L ≪ F the latent dimension. As re-
ported in [13], among several tested DVAE models, the recur-
rent variational autoencoder (RVAE) model [26] worked best on
the speech enhancement task. So, we also use this model in this
work. The RVAE generative model is defined as:

pθs(s1:T , z1:T ) =
T∏

t=1

pθs(st|z1:t)p(zt). (1)

For each time frame t, and conditionally to z1:t, st is assumed
to follow a circularly-symmetric zero-mean complex Gaussian
distribution [27, 28], pθs(st|z1:t) = Nc

(
st;0, diag(vθs,t)

)
. In

this work, all covariance matrices are assumed diagonal and are
represented by the vector of diagonal entries. Here, vθs,t ∈ RF

+

is a function of z1:t and is modeled with the RVAE decoder.
The latent vector zt is assumed to follow a standard Gaussian
prior distribution, p(zt) = N (zt;0, I).

The inference model, i.e. the approximated posterior distri-
bution of RVAE, is defined as [26]:

qϕz(z1:T |s1:T ) =
T∏

t=1

qϕz(zt|z1:t−1, st:T ), (2)

with zt assumed to follow a (real-valued) Gaussian distribu-
tion, qϕz(zt|z1:t−1, st:T ) = N

(
zt;µϕz,t, diag(vϕz,t)

)
, where

µϕz,t ∈ RL and vϕz,t ∈ RL
+ are both a function of z1:t−1 and

st:T , which is modeled with the RVAE encoder.2

The RVAE model is pre-trained on a clean speech dataset
by maximizing the evidence lower bound (ELBO) [26]:

L(θs, ϕz; s1:T ) = −
T∑

t=1

Eqϕz

[
dIS(|st|2,vθs,t)

+DKL
(
qϕz(zt|z1:t−1, st:T )||p(zt)

)]
, (3)

where modulus and exponentiation are element-wise, dIS(·, ·)
is the Itakura-Saito divergence [27] and DKL(·||·) is the Kull-
back–Leibler divergence (KLD).

2.2. DDGM-based noise model

Let x1:T = {xt}Tt=1 ∈ CF×T and n1:T = {nt}Tt=1 ∈ CF×T

denote respectively the complex-valued STFT spectrogram of
the noisy speech and the noise, which is assumed additive:

x1:T = s1:T + n1:T . (4)

2In practice, the squared modulus of the st:T entries are send to the
encoder input instead of the complex-valued STFT coefficients.

At each time frame t, nt is assumed to follow a circularly-
symmetric zero-mean complex Gaussian distribution:

pθn(nt) = Nc

(
nt;0, diag(vθn,t)

)
, (5)

where vθn,t ∈ RF
+ is the noise variance vector. In several

previous works, vθn,t was modeled with NMF, i.e. factorized
into the product of two low-rank non-negative matrices. In this
work, we model vθn,t with a DDGM. We propose three differ-
ent noise model dependencies: (i) DVAE latent variables (LV),
in which vθn,t is a function of the whole sequence of the DVAE
latent vectors, i.e. vθn,t = vθn,t(z1:T ); (ii) noisy observa-
tions (NO), in which vθn,t is a function of all the past values
of the noisy speech, i.e. vθn,t = vθn,t(x1:t−1); and (iii) both
noisy observations and DVAE latent variables (NOLV), in
which vθn,t is a function of all the past values of the noisy
speech as well as the past and present values of the DVAE latent
vectors, i.e. vθn,t = vθn,t(x1:t−1, z1:t). For clarity of presen-
tation, let pt denote the input of the noise model, i.e. pt = z1:T
in LV, pt = x1:t−1 in NO, and pt = {x1:t−1, z1:t} in NOLV.
For all model dependencies (NO, LV, or NOLV), the noise vari-
ance vθn,t is a function of pt that is implemented by a DNN.

Applying the chain rule and taking into account the condi-
tional dependencies, the generative model over the set of vari-
ables {x1:T , s1:T , z1:T } is given by:

pθ(x1:T , s1:T , z1:T ) =
T∏

t=1

pθn(xt|st,pt)pθs(st|z1:t)p(zt),

(6)
where

pθn(xt|st,pt) = Nc

(
xt; st, diag(vθn,t(pt))

)
(7)

is deduced from (4) and (5), pθs(st|z1:t) and p(zt) are defined
in Section 2.1, and θ = θs ∪ θn.

2.3. Speech enhancement with the inference model

The posterior distribution corresponding to the generative
model (6) factorizes as follows:

pθ(s1:T , z1:T |x1:T ) =
T∏

t=1

pθ(st|z1:t,xt,pt)pθ(zt|z1:t−1,x1:T ).

(8)
For each time frame t, pθ(st|z1:t,xt,pt) can be com-
puted in closed form as a complex Gaussian distribution
pθ(st|z1:t,xt,pt) = Nc(st;µθ,t, diag(vθ,t)), with

µθ,t =
vθs,t(z1:t)

vθs,t(z1:t) + vθn,t(pt)
xt, (9)

vθ,t =
vθs,t(z1:t)vθn,t(pt)

vθs,t(z1:t) + vθn,t(pt)
, (10)

where vector multiplication and division are element-wise.
Eq. (9) provides the clean speech signal minimum mean squared
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error (MMSE) estimate, which corresponds to the Wiener filter
output. The distribution pθ(zt|z1:t−1,x1:T ) is intractable and
cannot be used directly to recursively provide the z1:T estimate.
We thus approximate it with the RVAE inference model (defined
in Section 2.1):

pθ(zt|z1:t−1,x1:T ) ≈ qϕz(zt|z1:t−1,xt:T ). (11)

Here, the RVAE encoder, pre-trained on a clean speech signal
dataset, takes as input the noisy speech signal, and must thus be
adapted to such kind of input (see the next sub-section). In the
following, we inject (11) into (8), and the resulting approximate
joint posterior is denoted by pθ,ϕz(s1:T , z1:T |x1:T ).

2.4. Model optimization

We recall that the parameters {θs, ϕz} are learned by pre-
training the RVAE on a clean speech dataset. θs is then fixed
during the speech enhancement stage, whereas ϕz has to be
fine-tuned on the noisy signal(s), and we also have to estimate
the noise model parameters θn. As is usually done in variational
inference algorithms, the parameters are optimized by maximiz-
ing the ELBO, which is here defined as:

L(θn, ϕz;x1:T ) = Epθ,ϕz

[
log

pθ(x1:T , s1:T , z1:T )

pθ,ϕz(s1:T , z1:T |x1:T )

]
. (12)

Given the factorizations (6) and (8), and the fact that all involved
distributions are Gaussian, (12) can be developed as:

L(θn, ϕz;x1:T ) = −
T∑

t=1

Eqϕz

[
dIS(|xt|2,vθs,t + vθn,t)

+DKL
(
qϕz(zt|z1:t−1,xt:T )||p(zt)

)]
. (13)

As mentioned before, the model can be trained in either
NA or ND configuration. When trained in NA configuration,
the parameters {θn, ϕz} are estimated directly from the noisy
speech sequence to be enhanced. This is done by optimizing
the ELBO (13) independently on each single noisy speech se-
quence for a certain number of iterations. Afterwards, the clean
speech estimate is computed with (9), using the optimal param-
eters and latent vectors sampled from the encoder. This config-
uration allows the model to adapt to the specific noise patterns
of each test sequence, without the need for any prior knowledge
or training data on the noise type. This makes it suitable for sce-
narios where the noise type is unknown. When trained in ND
configuration, the model parameters are estimated by optimiz-
ing the ELBO (13) on a large noisy speech training set using
stochastic gradient descent (SGD) optimization (we recall that
no parallel noisy-clean data is thus used). Then at test time, the
clean speech is computed using (9) with a single forward pass
of the model on the noisy test sequence. This results in a much
more time-efficient inference than methods based on an NMF
noise model, while still achieving competitive performance. A
schematic view of the proposed method is shown in Fig. 1.

3. Experiments
3.1. Datasets and pre-processing

We used two datasets to evaluate the proposed method: the
WSJ0-QUT dataset introduced in [26] and reused in [13],
and the publicly available VoiceBank-DEMAND (VB-DMD)
dataset [29]. WSJ0-QUT is obtained by mixing clean signals
from the Wall Street Journal (WSJ0) dataset [30] with various

types of noise signals from the QUT-NOISE dataset [31] with
three different signal-to-noise ratio (SNR) values: −5, 0 and
5 dB. It contains 12,765 utterances from 101 speakers, 1,026
utterances from 10 speakers and 651 utterances from 8 speakers
for model training, validation and test, respectively. VB-DMD
is obtained by mixing clean signals from the VoiceBank (VB)
corpus [32] with ten types of noise from the DEMAND noise
dataset [33]. Following [17], we used 10,802 utterances from 26
speakers for training, 770 utterances from 2 other speakers for
validation, and 824 utterances from 2 other speakers for test.
The SNR values used for the training set are 15, 10, 5 and 0
dB, while the SNR values used for the test set are 17.5, 12.5,
7.5, and 2.5 dB. For each dataset, we first pre-trained the RVAE
model on the clean speech dataset, i.e. WSJ0 or VB; then we
estimated the noise model parameters using the noisy speech
data, either in the NA or ND configuration (see Section 2.4 ).

Before being input into the neural networks, the audio
signals are pre-processed as follows. We compute the STFT
with a 64-ms sine window (1,024 samples) and a 75%-overlap
(256-sample shift), resulting in a sequence of 513-dimensional
discrete Fourier coefficients (for positive frequencies). The
squared modulus of the STFT coefficients is computed after-
wards. For the RVAE pre-training and the speech enhancement
model trained in ND configuration, we first use a voice activ-
ity detection threshold of 30 dB to remove silence portions at
the beginning and the end of the signals, and rescale the wave-
forms in [−1, 1] before computing the STFT coefficients. And
we also split the training utterances into smaller sequences of
length T = 100 frames. At test time, the model is evaluated
on the complete noisy test utterances, which can be of variable
length. The speech enhancement model in NA configuration is
trained and evaluated directly on each single complete noisy test
utterances.

3.2. Implementation details and training settings

The RVAE architecture closely follows the one used in
[13], with the exception of replacing the bidirectional LSTM
(BLSTM) layers in both the encoder and decoder with standard
LSTM layers, since we use here the causal version of RVAE
[26]. The latent vector dimension was set to L = 16.

The NO noise model is implemented using an LSTM layer
that takes as input at time t the past noisy speech vectors x1:t−1,
followed by a multi-layer perceptron (MLP) with a tanh ac-
tivation function, except for the output layer, which is linear,
and which provides the noise log-variance vector logvθn,t(pt).
The architecture of the NOLV and LV noise model are similar
to that of the NO noise model, except that the NOLV model
uses two LSTM layers, one to encode information from the past
noisy speech vectors x1:t−1 and another one to process the past
and present latent vectors z1:t, and the LV noise model uses a
single BLSTM layer to encode information from the complete
latent vector sequence z1:T .

For all training processes, we used the Adam optimizer
[34] with parameters β1 = 0.9, β2 = 0.99, ϵ = 10−9. For
RVAE pre-training and ND training configuration, we decayed
the learning rate (from 5×10−4 to 10−8) with a cosine anneal-
ing scheduler [35]. The models are trained in maximum 500
epochs and the validation set is used to select the best models.
During the RVAE pre-training, we applied linear warm-up to
the KL term in (3) during the first 20 epochs [36].
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Table 1: Speech enhancement results. S stands for supervised, U-NA stands for unsupervised noise-agnostic and U-ND stands for
unsupervised noise-dependent, U-NDA stands for U-ND training followed by noise adaptation fine-tuning. Except for the RTF, the
baselines scores are taken from the corresponding papers. The best scores are in bold and the second best scores are underlined.

Data Model Sup SI-SDR ↑ PESQMOS ↑ PESQWB ↑ PESQNB ↑ ESTOI ↑ # Iter. ↓ RTF ↓

W
SJ

0-
Q

U
T

Noisy mix. - -2.6 1.83 1.14 1.57 0.50 - -

UMX S 5.7 2.16 1.38 1.83 0.63 - -
MetricGAN+ S 3.6 2.83 2.18 2.61 0.60 - -

RVAE-VEM U-NA 5.8 2.27 1.54 1.98 0.62 300 27.91

RVAE-LV U-NA / U-ND / U-NDA 5.4 / 5.3 / 6.2 2.31 / 2.25 / 2.38 1.53 / 1.53 / 1.65 2.01 / 1.95 / 2.07 0.65 / 0.60 / 0.62 1000 / 0 / 190 89.42 / 0.02 / 17.42
RVAE-NO U-NA / U-ND / U-NDA 6.0 / 3.7 / 5.8 2.33 / 2.11 / 2.31 1.56 / 1.37 / 1.54 2.04 / 1.81 / 2.02 0.65 / 0.58 / 0.63 1000 / 0 / 500 89.34 / 0.02 / 45.54

RVAE-NOLV U-NA / U-ND / U-NDA 5.5 / 4.9 / 6.2 2.31 / 2.11 / 2.29 1.53 / 1.42 / 1.56 2.01 / 1.83 / 2.00 0.65 / 0.60 / 0.62 1000 / 0 / 500 90.98 / 0.02 / 45.92

V
B

-D
M

D

Noisy mix. - 8.4 3.02 1.97 2.88 0.79 - -

UMX S 14.0 3.18 2.35 3.08 0.83 - -
MetricGAN+ S 8.5 3.59 3.13 3.63 0.83 - -

CDiffuSE S 12.6 - 2.46 - 0.79 - -
SGMSE+ S 17.3 - 2.93 - 0.87 - 3.39

NyTT Xtra U-ND 17.7 - 2.30 - - - -
MetricGAN-U U-ND 8.2 3.20 2.45 3.11 0.77 - -
RVAE-VEM U-NA 17.1 3.23 2.48 3.15 0.81 100 9.55

RVAE-LV U-NA / U-ND / U-NDA 17.5 / 17.4 / 17.8 3.23 / 3.24 / 3.22 2.39 / 2.40 / 2.38 3.15 / 3.17 / 3.14 0.82 / 0.81 / 0.81 900 / 0 / 25 81.62 / 0.02 / 2.32
RVAE-NO U-NA / U-ND / U-NDA 17.3 / 16.7 / 17.2 3.25 / 3.03 / 3.06 2.40 / 2.12 / 2.18 3.18 / 2.89 / 2.93 0.82 / 0.79 / 0.80 400 / 0 / 25 36.79 / 0.02 / 2.13

RVAE-NOLV U-NA / U-ND / U-NDA 17.5 / 16.9 / 17.4 3.25 / 3.04 / 3.17 2.40 / 2.14 / 2.30 3.18 / 2.90 / 3.07 0.82 / 0.79 / 0.81 800 / 0 / 95 73.24 / 0.02 / 8.84

3.3. Baselines and evaluation metrics

We compare our method with both supervised and unsuper-
vised speech enhancement baselines. For supervised baselines,
we considered Open-Unmix (UMX) [37] and MetricGAN+
[6], which are BLSTM-based methods, and CDiffuSE [7] and
SGMSE+ [8], which are diffusion-based methods. For unsu-
pervised baselines, we compared to MetricGAN-U [17], NyTT
[16], and RVAE-VEM [26, 13].

As for the speech enhancement performance metrics, we
used the scale-invariant signal-to-distortion ratio (SI-SDR) [38]
in dB, the perceptual evaluation of speech quality (PESQ) score
[39] (in [−0.5, 4.5]), and the extended short-time objective in-
telligibility (ESTOI) score [40] (in [0, 1]). We also evaluated the
computational efficiency of the inference (denoising algorithm)
for RVAE-VEM, SGMSE+ and the proposed method (in dif-
ferent configurations) using the average real-time factor (RTF),
which is the time required to process 1 second of audio.3

3.4. Experimental results

The speech enhancement results are reported in Table 1. When
tested in the NA configuration, our method has a better perfor-
mance than the unsupervised baselines on both datasets in terms
of the SI-SDR. The results are actually comparable to those of
the supervised methods (although this can depend on the met-
rics), even though we have never used pairs of aligned noisy-
clean speech data for training. This shows the ability of the
proposed model to adapt to the noise characteristics in the NA
configuration. More specifically, in the NA configuration, the
RVAE-NO model performs slightly better than the other two
models on the WSJ0-QUT dataset while the three noise model
variants (NO, NOLV, LV) lead to very similar performance on
the VB-DMD dataset. However, the RVAE-NO model and
RVAE-NOLV model have a slight drop of performance when
trained in ND configuration. This may be due to the mismatch
between train and test data in this ND configuration (different
types of noise being used for training and test). In contrast, the
RVAE-LV model reveals very robust when used in the ND con-

3All of the RTF values are computed on NVIDIA Quadro RTX 4000
GPU, in a machine with an Intel(R) Xeon(R) W-2145 CPU @ 3.70GHz
and averaged on 10 sequences.

figuration. This may be because estimating the noise variance
only from the latent vectors, without using the noisy speech vec-
tors, helps to alleviate the training/test data mismatch issue.

As for the computational cost, in the NA configuration, the
RTF mainly depends on the number of iterations run on each
test sequence. It can be seen from Table 1 that, in general,
achieving good performance in the NA configuration is at the
price of very high RTF values. In contrast, in the ND configu-
ration, the inference process only requires a single forward pass
of the trained model, resulting in a much lower RTF value of
0.02 for all of the proposed model variants. Due to the time-
consuming inverse diffusion process, the state-of-the-art super-
vised baseline SGMSE+ has an RTF value that is much higher
than the proposed unsupervised model in the ND configuration,
while the two methods have similar performance in terms of SI-
SDR (however, the RTF of SGMSE+ remains much lower than
the proposed model in the NA configuration).

Finally, after being trained in the ND configuration, the pro-
posed model can further be fine-tuned on each noisy test se-
quence, just like in the NA configuration. This new ‘hybrid’
mode is referred to as NDA in Table 1. We found that on the
VB-DMD dataset, after just a few iterations of fine-tuning, the
performance of all the three model variants were greatly im-
proved (over the ND configuration). This is also true on WSJ0-
QUT, but at the price of more fine-tuning iterations.

4. Conclusion
We presented a new unsupervised speech enhancement model
that uses a DDGM for both speech and noise. We tested three
different dependencies for the noise model (NO, NOLV, LV),
as well as three ‘training/testing’ configurations (NA, ND, and
ND + noise adaptation). Experiments show that in the NA con-
figuration, our model outperforms several unsupervised base-
lines (including RVAE+NMF), and competes well with the su-
pervised baselines. In the ND configuration, our model pro-
vides a very fast inference process with only minimal perfor-
mance degradation (especially for RVAE-LV). Furthermore, the
ND + noise adaptation configuration enables the model to adapt
to specific noise types and further improve performance, with
much less iterations than in the NA configuration.

5105



5. References
[1] J. Benesty, S. Makino, and J. Chen, Speech Enhancement.

Springer Berlin, Heidelberg, 2005.

[2] P. C. Loizou, Speech enhancement: Theory and practice. CRC
press, 2007.

[3] D. Wang and J. Chen, “Supervised speech separation based on
deep learning: An overview,” IEEE/ACM Trans. Audio, Speech,
Lang. Process., vol. 26, no. 10, pp. 1702–1726, 2018.

[4] S. Pascual, A. Bonafonte, and J. Serrà, “SEGAN: Speech en-
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