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Abstract
Data augmentation is a key component to achieve robust and
generalizable performance in sound event detection (SED). A
well trained SED model should be able to resist the interfer-
ence of non-target audio events and maintain a robust recogni-
tion rate under unknown and possibly mismatched testing con-
ditions. In this study, we propose a novel background domain
switch (BDS) data augmentation technique for SED. BDS uti-
lizes a trained SED model on-the-fly to detect backgrounds in
audio clips, and switches them among the data points to in-
crease sample variability. This approach can be easily combined
with other types of data augmentation techniques. We evaluate
the effectiveness of BDS by applying it to several state-of-the-
art SED frameworks, and used both publicly available datasets
as well as a synthesized mismatched test set. Experiment re-
sults systematically show that BDS obtains significant perfor-
mance improvements from all evaluation aspects. The code is
available at: https://github.com/boschresearch/
soundsee-background-domain-switch
Index Terms: sound event detection, data augmentation, non-
target audio events

1. Introduction
Sound event detection (SED) systems aim at describing sound-
ing objects by detecting, categorizing, and locating the time
boundaries of acoustic events (”what” and ”when”) in a stream
or an audio file [1]. With the huge success of deep learning
(DL) approaches in several speech-related tasks, such as auto-
matic speech recognition [2] and speech enhancement [3], re-
cent SED systems based on DL [4] are showing significant im-
provements over handcrafted features fed to machine-learning
algorithms. However, DL models are prone to overfitting and
may exhibit poor generalization, especially when there is a lack
of diverse and large training samples [5]. Therefore, model reg-
ularization techniques such as dropout [6], or data augmentation
strategies [7] are critical to achieve robust recognition perfor-
mance. Using appropriate regularization in an SED task proves
crucial, since it is hard to collect diverse and large high-quality
timestamped labeled audio data (i.e., strong labels) [8, 9, 10].

Besides the DL modeling perspective, the performance of
SED is notably affected by interference of non-target audio
events (i.e., other background sounds that are not included in the
SED recognition classes). The existence of non-target events
in the testing stage could severely degrade the model perfor-
mance [11, 12]. For instance, Ronchini et al. [11] found that
simply incorporating non-target audio events in the training
data can improve the system accuracy. However, this approach
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might not be feasible in realistic settings given the unknown na-
ture of non-target audio events. An SED model robust to non-
target events could avoid undesired false alarms, a property im-
portant in many applications to improve user experience [13].
Therefore, it is necessary to assess the SED models for both
target and non-target testing environments, to obtain a compre-
hensive evaluation.

Motivated by this, we propose a novel background domain
switch (BDS) data augmentation to improve the robustness of
SED models in presence of non-target audio events. BDS
firstly relies on a self-labeling process to automatically identify
background sounds (i.e., non-target background audio events)
in given audio clips. Next, it randomly switches these back-
grounds among batch of data samples. This method produces an
augmented training set without altering the original labels (i.e.,
target event classes). BDS can be applied along with other data
augmentations techniques such as MixUp [14], SpecAug [7],
etc., to further increase the model regularization. In this study,
we adopt the conventional DCASE 2022-Task4 [15, 16] setup
to evaluate our approach. In addition, we carefully curate a syn-
thesized mismatched test set to evaluate model performance un-
der the presence of non-target audio events interference. Our
experimental results show that BDS leads to statistically sig-
nificant improvements over other baselines under polyphonic
sound detection score (PSDS) [13] metrics. We also demon-
strate that BDS is flexible enough to combine with other ad-
vanced modeling approaches such as frequency dynamic convo-
lution framework (FDY-SED) [9], to further improve the model
performances. In summary, the main contributions of this work
are: 1) A novel BDS data augmentation approach to improve
SED models robustness in the presence of non-target audio
events. 2) A method that is flexible to be integrated into other
existing SED frameworks and regularization techniques for bet-
ter recognition performance.

2. Background
2.1. Sound Event Detection
Various DL techniques were proposed to tackle the limited
availability of strongly labeled audio data necessary for build-
ing SED models. For instance, the Mean-Teacher (M-T) semi-
supervised training scheme was proposed to leverage large
amount of unlabeled data to extract additional complementary
information [17, 18]. McFee et al. [19] treated SED as a mul-
tiple instance learning problem, where the model implicitly in-
fers the temporal boundary of events from a given static clip-
level label (i.e., weak labels without time boundaries) by utiliz-
ing adaptive pooling operators. Ebbers and Haeb-Umbach [20]
explicitly exploited the model predictions on the unlabeled and
weakly-labeled data as their pseudo-strong labels, which are
then utilized to retrain the model. Another main research direc-
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Figure 1: Overview of the SED framework with proposed BDS
module, EMA: Exponential Moving Average.

tion in SED is designing audio event specific features or mod-
els. For instance, events with different temporal properties (e.g.,
cat meowing as short event) or distinct frequency patterns (e.g.,
stationary high-frequency vacuum cleaner sound) can be mod-
eled better by dynamic-kernel convolution layers such as selec-
tive kernel (SK) or FDY-SED framework [18, 21, 9, 22]. In our
work, we follow the standard M-T framework from [17] to build
an SED model (Sec. 3.1). In addition, we introduce BDS into
the existing FDY-SED framework [9] to show the adaptability
of our approach (Sec. 5.1) into existing techniques.

2.2. Data Augmentation Techniques in Audio Domain
Data augmentation techniques are of paramount importance to
improve the performance of DL models under data-limited sce-
narios. In audio/speech domains, many tasks including SED
rely heavily on different types of augmentation approaches [9,
18, 17]. The most straightforward method is to manipulate the
input acoustic features, with noise injection [23], frame-shift,
time/frequency warping and masking (i.e., SpecAugment [7]) or
more advanced regional frequency amplification/reduction (i.e.,
FilterAugment [10]). Another conventional approach is focus-
ing on the generation of new training samples. For instance,
SCAPER [24] synthesizes different background tracks with the
target foreground sounds (e.g., acoustic events) to create un-
limited synthetic datasets. MixUp [14] and CopyPaste [25]
perform on-the-fly addition or concatenation of two data sam-
ples that are randomly selected in a training batch, resulting in
new data points. Different from above-mentioned, our BDS ap-
proach switches background features that are detected by the
SED model among the training batch to produce augmented
samples.

3. Proposed method
3.1. System Framework
We directly adopt the official baseline framework1 from
DCASE2022 Challenge as our backbone SED model. Fig-
ure 1 depicts an overview of the framework. The model uses
the Mean-Teacher (M-T) training strategy from [26] to lever-
age a mix of strongly labeled, weakly labeled, and unlabeled
data. Both student and teacher models are fed with augmented
samples, according to the augmentation strategy at hand. A
consistency loss (i.e., mean squared error, MSE) is imposed
to push the predictions from student and teacher models to be
as similar as possible. A supervised loss (i.e., binary cross-
entropy, BCE) is applied to the predictions of the student model,
frame-wise when for strongly-labeled samples, clip-wise for
weakly-labeled samples. The teacher model updates its weights

1https://github.com/DCASE-REPO/DESED_task/
tree/master/recipes/dcase2022_task4_baseline
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Figure 2: Visualization of the background detection process in
BDS using on-the-fly trained SED model Φ(·). Variables T, F
and t, C refer to the input feature length, dimension and pre-
dicted output sequence length, classes, respectively.

from the student model through an exponential moving aver-
age (EMA) strategy. An attention-based pooling layer is ap-
plied to summarize frame-level predictions into the clip-level
results. The model architecture is a standard convolutional re-
current neural network (CRNN). More details about the model
can be found in [26].

3.2. Background Domain Switch
The core component of BDS is leveraging the trained SED
model on-the-fly during the training process as a background-
foreground recognizer. Here, we refer to background as any
sounds (including silence and noises) that does not belong to
any target event in the SED model. More specifically, let
Y = {y1,y2, . . . ,yt} ∈ Rt×C represents the sequential pre-
diction output of Φ(X), where C is the number of target classes,
t is the number of time frames in Y, Φ(·) denotes the student
model from the previous training iteration, and X ∈ RT×F is
the input 2D acoustic feature map with T frames and F fea-
tures. Note that t < T if any presence of temporal-wise pool-
ing layers in the convolutional encoder of the SED model. A
background segment is detected between frames t1 and t2 if
yi(j) < τ, ∀i ∈ [t1, t2] , j ∈ [1,C] and t2 − t1 ≥ m,
i.e. a background segment is a period of at least m consecutive
frames where no class is predicted with confidence above τ .

Figure 2 shows an example of the background detection
process for BDS. The two factors τ and m control the amount
and confidence level of the detected background segments. For
instance, we can reduce τ to increase the sensitivity to target
events, and thus reduce the contamination of background seg-
ments. Or we can increase m, to prevent short segments mis-
classified as background to enter the pool of background seg-
ments. Besides τ and m, it is also crucial to incorporate BDS
only at a later stages of training, i.e. once the Φ(·) has gained
enough discrimination ability to serve as a reliable background
detector. In general, we apply BDS only to the last x% training
epochs. Note that in case of availability of strong labels in the
training data, we can directly use the ground-truth to identify
background segments. The detected background segments are
randomly selected and switched within a mini-batch, thus gen-
erating on-the-fly augmented data, without changing the orig-
inal event labels. In case of different duration between back-
ground segments, we simply crop segments that are too long, or
repeat over time those that are too short.

BDS is a flexible augmentation technique that can be ap-
plied to different types of training conditions. For example,
when having mixed training data from different domains (e.g.,
synthetic versus real-world data), having training samples in
the same domain but from different datasets (e.g., cross-corpus
training), or simply having data within same training set. An-
other interesting property of BDS is that it is direction-specific
depending on the application scenario of the SED system. For
instance, when having a mixed of synthetic and real-world data
we might not expect the backgrounds from the synthetic data to
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Figure 3: Label co-occurrence ratio across events for the two
blind test sets.

appear in the real life scenarios. Hence, we perform unidirec-
tional BDS to only switch synthetic backgrounds with the real-
world ones. For the unknown or mismatch test cases, we can
perform bi-directional BDS (Bi-BDS) to switch backgrounds in
all the training samples to further improve the overall general-
ization performance (see Sec. 5.1).

4. Resources and Experimental Settings

4.1. Datasets

Domestic environment sound event detection (DESED) dataset
[8] is used for the DCASE2022-Task4, which consists of
weakly-labeled (1,578 clips), synthesized strongly-labeled
(10,000 clips) and unlabeled (14,412 clips) training sets. Ad-
ditional validation (Dev. Test) set (1,168 clips) is provided
for hyperparameters tuning and model development. The final
model performances are compared on a blind public-evaluation
(Public-Eval. Test) set (692 clips). All the audio clips are pro-
cessed to have a fixed 10 seconds duration. Synthetic data is
generated using SCAPER [24], and all the other sets are col-
lected from real-world audio clips (i.e., YouTube videos and
AudioSet [27]). The 10 target sound events included in DESED
are: alarm/bell ringing (alm), blender (bld), cat (cat), dishes
(dsh), dog (dog), electric shaver/toothbrush (shv), frying (fry),
running water (wtr), speech (spch) and vacuum cleaner (vcm).
In addition, we purposely curated a synthetic Mismatch Test
set (500 clips) with SCAPER, to evaluate the model robust-
ness toward non-target events. We incorporated 8 outdoor ambi-
ent recordings (construction, stream, thunderstorm, street, bab-
ble, bus station, basketball and baseball court) from Airborne
Sound [28] as background tracks to combine with the target
foreground events from DESED.

Figure 3 shows the label distribution/co-occurrence of
Public-Eval Test set of DESED (a) and the curated Mismatch
Test set (b). As seen in the confusion matrix (a), the label dis-
tribution in Public-Eval Test set is far from uniform, as some
events have higher co-occurrence than others. For example,
speech has a strong presence throughout the dataset, and it al-
ways co-occurs with blender and vacuum sounds. Likewise, fry-
ing sound co-occurs 58% of the time with dishes sound. These
co-occurrences are directly related to the acoustic environment
that the data is collected in (e.g. domestic environment). Sim-
ilar trends are observed in DESED training set. Unlike the
Public-Eval set of DESED data, we curated the Mismatch Test
set with a uniform distribution of co-occurrences across differ-
ent classes. We made this design choice to evaluate the gen-
eralizability of the trained models toward different label distri-
butions, regardless of the environmentally forced audio event
co-occurrences.

Table 1: Summary of system performance based on different
data augmentation approaches. The symbols ∗ and † indi-
cate that the performance improvements over the Baseline and
StrongAug are statistically significant, respectively. Standard
deviation of system performances across the 10 running trials
are all below 0.02.

Approach Public-Eval. Test Mismatch Test
PSDS-1 PSDS-2 PSDS-1 PSDS-2

Baseline 0.3548 0.5464 0.2180 0.3925
StrongAug 0.3536 0.5614∗ 0.2457∗ 0.4371∗

Baseline
0.3699∗† 0.5546 0.2614∗† 0.4263∗+BDS

Baseline
0.3647∗† 0.5552 0.2509∗ 0.4228∗+Bi-BDS

StrongAug 0.3595 0.5718∗† 0.2625∗† 0.4484∗†+BDS
StrongAug 0.3497 0.5658∗ 0.2789∗† 0.4829∗†
+Bi-BDS

4.2. Experimental Setup

All training hyper-parameters (optimizer, learning rate, batch
size, weighting of loss functions) are the same as in the offi-
cial baseline. Input acoustic feature is a 128-dimensional log
Mel-spectrogram, extracted from mono, 16kHz audio clips us-
ing 16ms hop size. The BDS decision threshold τ (see Sec-
tion 3.2), is set to 0.4, m is set to 40 frames (i.e., 0.64 secs)
and BDS is applied once training has reached 60% of the to-
tal number of epochs, (i.e. we apply BDS in the last 40% of
the training epochs). We evaluate the impact of BDS hyperpa-
rameters in Section 5.2. We measure the performance under the
PSDS-1 and PSDS-2 metrics [13], to evaluate the SED model
for both time-localization and detection of acoustic events, re-
spectively. We report the average results of PSDS scores after
running 10 trials with different network initialization (i.e. dif-
ferent random seeds). We implement this strategy to conduct
statistical analysis using a two-tailed t-test, where the statisti-
cal significance is defined when p-value ≤ 0.05. By default,
the data augmentation of baseline model is applied with 50%
chance to perform MixUp. Studies have shown the benefits of
increasing augmentation complexity in SED model [9, 18, 21],
therefore we add another strong augmentation (StrongAug) set-
ting to our comparison, which has a 75% chance of performing
MixUp, CopyPaste and SpecAugment.

5. Experimental Results and Analysis
5.1. System Performance Comparison

Table 1 summarizes model performances with different data
augmentations under the baseline framework. There are
three major points to highlight. First, StrongAug signifi-
cantly improves the generalization performance. This result re-
emphasizes that increasing the data augmentation complexity is
effective to build a better SED model. Second, by introducing
the proposed BDS approach prior to other data augmentations,
we consistently gain significant performance improvement, es-
pecially in the Mismatch Test scenario. Specifically, we can see
a 13.5% and 10.5% relative performance gains after applying
BDS for PSDS-1 and PSDS-2 on the Mismatch Test, respec-
tively (comparison of StrongAug vs StrongAug+Bi-BDS). BDS
switches the background features among different data sources,
adding another layer of data complexity on top of other data
augmentation approaches. For instance, MixUp mixes two data
points based on the BDS outputs, which are blended with dif-
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Figure 4: Performance trends on the three test sets for BDS using different hyperparameters on top of StrongAug setting.

Table 2: Summary of system performance based on the FDY-
SED framework [9]. The symbol ∗ indicates that the perfor-
mance improvements over the original FDY-SED model are
statistically significant. Standard deviation of system perfor-
mances across the 10 trials are all below 0.02.

Approach Public-Eval. Test Mismatch Test
PSDS-1 PSDS-2 PSDS-1 PSDS-2

FDY-SED 0.4290 0.6584 0.1464 0.2247
FDY-SED

0.4491∗ 0.6686∗ 0.1386 0.2154+BDS
FDY-SED

0.4431∗ 0.6749∗ 0.1640∗ 0.2789∗
+Bi-BDS

ferent backgrounds. This further increases model regularization
during training stage and thus benefits the model performance
and robustness. Third, we observe that the model performs bet-
ter for Public-Eval Test case when using unidirectional BDS,
while Bi-BDS is better for Mismatch Test. This interesting
finding indicates that we can adjust the BDS setup depending
on the application scenario of SED model. For the known and
matched testing conditions, we can simply adopt unidirectional
BDS for domain-specific background switch to serve as sce-
nario enhanced data augmentation. To increase the model ro-
bustness against unknown non-target interference, Bi-BDS is a
favorable option.

We also apply BDS on other advanced SED framework to
further validate the generality of our proposed approach. Fre-
quency dynamic convolution (FDY-SED) model [9] uses adapt-
able convolutional kernels to better capture intrinsic character-
istics of different sound events (e.g., stationary sounds with cer-
tain frequency regions like vacuum cleaner), achieving state-of-
the-art model performance in the DCASE Challenge. Frame-
shift, MixUp, time masking and FilterAugment are applied as
the data augmentations in FDY-SED. Similar to the previous
experiments, we apply BDS prior to these augmentations. All
other settings such as model architecture and training parame-
ters are the same as the released Github repository2. Note that
we report the average model performance based on different tri-
als to run statistical test, which is different from the original pa-
per [9] that reports the best performance among these trials. Ta-
ble 2 summarizes the results based on the FDY-SED framework.
We observe significant improvements for all the evaluation sce-
narios after adding BDS. In particular, the relative gains reach
to 12% and 24% for PSDS-1 and PSDS-2 on the Mismatch
Test, respectively (comparing to FDY-SED+Bi-BDS). The re-
sult demonstrates that the proposed BDS approach is flexible
and effective to be integrated into other advanced SED frame-
works. By simply adding an additional BDS operation prior to

2https://github.com/frednam93/FDY-SED

the original data augmentation module, we can achieve better
model generalization and robustness.

5.2. Impacts of BDS Hyperparameters
In this section, we examine the impact of different hyperparam-
eters in BDS. Figure 4 illustrates the performance trends for the
three test sets (Dev., Public-Eval. and Mismatch). As men-
tioned in Section 4.1, we use the Dev Test for BDS hyperpa-
rameters tuning. Here, we show the results of varying event
decision threshold τ and number of training epochs in which
BDS is applied x%. The hyperparameter m, minimum consec-
utive frames, has a similar flat-like trend as Figure 4a and is not
shown due to space constraints. We observe that all the results
have high consensus across three test sets (i.e., similar trends),
and the Mismatch Test results consistently show a lower perfor-
mance due to the non-target event interference. For the thresh-
old τ , we see a flat trend across different settings, indicating a
minor role of the parameter. This implies that the trained SED
model has high confidence toward its predictions (i.e., predicted
class probabilities are typically located at the two edges such as
below 0.1 or above 0.9). Empirically, smoothing model’s pre-
dictions can bring better generalization performance, thus en-
semble models could provide additional benefits [21]. On the
other hand, the entry epoch of BDS in the training process plays
a critical role in the final model performance. A clear drop of
the model performance is observed when BDS is applied early
on during the training (i.e., see leftmost data point in Figure 4b,
which means we apply BDS from the start of the training pro-
cess). In the early stages of training, the SED model is not
powerful enough to discriminate between the foreground and
background events and will result in a data augmentation that
further confuses the model training.

6. Conclusions
In this paper we proposed a novel background domain switch
(BDS) data augmentation approach to improve SED models.
BDS leverages the trained SED model on-the-fly as a back-
ground detector, switching different backgrounds among the
training data for better model generalization and robustness. We
demonstrated that BDS can be easily integrated into other exist-
ing state-of-the-art SED frameworks by simply introducing it
prior to other data augmentation approaches. Furthermore, we
purposely curated a mismatch test set with balanced label distri-
bution using background sounds that are not present in the train-
ing data. This set is used to evaluate the robustness of the trained
models toward mismatched condition and different label distri-
bution. We hope the design concept of mismatch test set will
inspire future research in building a comprehensive mismatch
evaluation criteria. In future works, we plan to extend BDS to
multi-modal learning, where we can utilize complementary in-
formation from other modalities to detect background events.
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