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Abstract
This paper presents a generative neural network to estimate
room impulse response (RIR) directly from the received rever-
berant speech in single-channel scenario. Complex spectrogram
of the reverberant speech is used as the input of an encoder to
produce the compact acoustic embedding, which is then fed to
a generator to construct the related time-domain acoustic re-
sponse. To avoid a large model to generate the RIR with long
taps, we propose SG-RIR, a novel segmental generative net-
work that splits the RIR into segments and shares the network
parameters across segments for blind RIR estimation. Experi-
mental results show that the proposed model is capable of esti-
mating the time-domain RIR with mean error of 0.008 in terms
of both simulated and measured RIR test sets. The effectiveness
is further verified by the achieved competitive estimation ac-
curacy of two key room acoustic parameters (the reverberation
time RT and the direct-to-reverberant ratio DRR) as compared
to state-of-the-art approaches that are specific for RT and DRR
estimation.
Index Terms: room impulse response, blind estimation, acous-
tic embedding, generative neural network

1. Introduction
The acoustic characteristics of a room have been shown to be
important for many applications in audio analysis and speech
processing, such as virtual sound in augmented reality au-
dio [1], speech quality assessment [2], speech dereverbera-
tion [3] and distant speech recognition [4]. The room impulse
response (RIR), representing the whole information of acous-
tic characteristics between two physical positions [5], can be
measured manually, e.g., using an excitation signal such as a
swept-sine signal [6]. However, RIR recordings require time
and other resources, and are not always practical in real-world
scenarios. Alternatively, acoustic simulators have been used for
decades to generate synthetic/simulated RIRs using e.g., wave-
based approach [7], or geometric-based approach with image
source [8] or ray tracing [9]. On the other hand, their applica-
tions are limited due to the required geometric shape and ma-
terial parameters of the target room environment, or too com-
plex room geometry to simulate. Consequently, it is of great
interest to blindly (or non-intrusively) estimate the real RIR.
As direct estimate of the time-domain RIR from speech sig-
nals remains challenging due to its long taps (thousands of sam-
ples), research has been turned to estimate the key parameters
of RIR, namely blind room acoustic parameter estimation. For
instance, the reverberation time (RT), defined as the time in-
terval for a 60 dB decay of the sound energy after the sound
source is ceased, has drawn much attention for years [10, 11].
The direct-to-reverberant ratio (DRR) is another important pa-

rameter [12], referring to the energy ratio between the direct
path and the reverberation caused by multi-path propagation
from the sound source to the receiver. The summary of recent
progress of blind room acoustic parameter estimation can be re-
ferred to [13]. While the estimated room parameters already
provide useful knowledge of the acoustic characteristics, an au-
ralization of the RIR is still more desirable: 1) though, given
RT and DRR, RIRs can be modeled as white noise modulated
by an exponentially decaying envelope [14, 10], such model can
not capture subtleties such as early reflection patterns and col-
oration; 2) a complete time-domain RIR is generally required
for augmented reality and reverb matching [15].

Recently, with the advances of deep learning, research on
direct estimate of real time-domain RIR has been conducted.
Improved generation of a realistic RIR has been proposed using
neural networks, e.g., Ratnarajah et al. [16] proposed IR-GAN
to generate more realistic synthetic RIRs with a generative ad-
versarial network (GAN) fed by a latent vector drawn from a
Gaussian distribution and be constrained by four key acoustic
parameters. They further introduced TS-RIRGAN [17] to trans-
late a simulated RIR to a more realistic RIR. FAST-RIR [18] fo-
cused on constructing specular and diffuse reflections in RIRs
using conditional GAN with conventional environmental pa-
rameters. Improved RIR synthesis with multiple channels has
been also studied in [19, 20]. In parallel, implicit RIR extraction
in end-to-end neural framework has been introduced in acoustic
matching [15] to transform speech recordings in a source envi-
ronment to a target. The long taps of the real RIR still plays an
obstructive role in explicit RIR estimation with neural networks.
Alternatively, with the RIR modeling inspired from room acous-
tics [5] as a summation of decaying filtered noise signals along
with the direct sound and early reflections, Steinmetz et al. [21]
proposed FiNS that yields several orders of filtered noise signals
to simulate late reverberation instead of estimating the common
thousands of taps. Based on state-variable filter parameteriza-
tion and frequency-sampling method, Lee at al. [22] introduced
a differentiable artificial reverberation framework to estimate
reverberation parameters for synthesizing RIR.

In an attempt to directly estimate the long but exact taps
to explicitly construct the time-domain RIR and meanwhile, to
avoid using a very large model, we propose a blind RIR esti-
mation framework SG-RIR based on generative neural network
with a novel segmental operation. More specifically, an encoder
network is applied to extract the low-dimensional acoustic em-
bedding from monaural reverberant speech, provided that such
embedding could represent the acoustic characteristics only,
i.e., invariant to speech content and speaker identity [15]. Then
a generative network is adopted that is capable of construct-
ing counterpart that is very similar to the real data, particularly
incorporating a discriminator [23]. Inspired by subband net-
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Figure 1: The structure of SG-RIR consisting of an encoder and a segmental generative network, as well as a discriminator if applied.

work [24, 25] in which network parameters can be shared across
frequency bands, the proposed generative network is designed
to yield a segmental component of the complete RIR each time
with the repeated embedding input. Moreover, to label the se-
quence of the segments, positional encoding [26] is used and
integrated into the embedding, and an overlap between the se-
quential RIR segments is introduced to eliminate the concate-
nation artifacts.

The remainder of this paper is organized as follows: We
first introduce the novelty of the proposed method with the seg-
mental network architecture and metrics-oriented loss function
in Sec. 2, and the experimental setup for evaluation is described
in Sec 3. Results and discussion are presented in Sec. 4 before
Sec. 5 concludes the paper.

2. Proposed Method
The overall structure of the proposed SG-RIR is illustrated in
Figure 1. First, the spectrograms of the reverberant speech sig-
nal x(ℓ), modeled by convolving anechoic speech to an RIR
h(ℓ) with sample index ℓ, are fed to an encoder network to ex-
tract a latent acoustic embedding. The segmental generative
network is then used to transform the acoustic embedding to
the segmental RIR incorporating a discriminator if applied dur-
ing training. The complete estimated RIR ĥ(ℓ) with length L is
concatenated across the N sequential segments with overlap.

2.1. Encoder
The encoder follows the structure of ResNet introduced in [27],
consisting of 2-dimensional convolution, batch normalization,
max pooling layer, two ResConvBlocks, average pooling and
linear layer. We use the spectrograms of the reverberant speech
signal as input and evaluate the comparable performance be-
tween magnitude and complex (real and imaginary). A fixed
Z-dimensional real latent embedding z ∈ RZ is the output,
which is expected to focus on capturing only the attributes of
the RIR from the reverberant speech.

2.2. Segmental Generative Network

To avoid a very large output dimension of generative neural
network, segmental generative network is designed to generate
a segmental part of the RIR each time, and positional encod-

ing [26] is adopted to label the sequence of the segments from
1 to N for the latter sequential concatenation. Inspired by the
subband network [24] that is capable of sharing network pa-
rameters to yield independent output, the acoustic embedding
is repeated along with the positional label to fed to a typical
generative network, i.e., a stack of three long short-term mem-
ory (LSTM) layers with a Tanh activation to constrain the RIR
range. Further, an overlap M between the sequential segments
is introduced to avoid concatenate artifacts with segment length
S. Considering the fixed-length L of the estimated RIR ĥ(ℓ),
the amount of segments N is calculated as ⌊(L−M)/S⌋+ 1.

In addition, a discriminator can be employed to facili-
tate the training of the generative network, forming the GAN
manner [28, 23, 29]. The estimated segmental time-domain
RIR and the ground-truth counterpart are fed to the discrimi-
nator network, which is composed of two ResConvBlocks, 1-
dimensional convolution and average pooling layer. In order
to match the estimated segmental RIR with its ground-truth (to
alleviate one-to-many issue), we further concatenate the embed-
ding z as an additional label as illustrated in Figure 1, following
another 1-dimensional convolution and average pooling layer
before making the decision. As well, a discriminator can enable
an unsupervised learning manner for the generative network, as
mathematically expressed in the loss function as follows.

2.3. Loss Function

We use the signal-to-distortion ratio (SDR) loss as the mini-
mization criterion to train the model with Adam optimizer, com-
puted as

Lsdr = E

{
10 · log10

||h(ℓ)− ĥ(ℓ)||2
||h(ℓ)||2

}
, (1)

where E{·} and || · ||2 denote the expectation across all the
segments and the L2 norm, respectively. Inspired by the use
of evaluation metrics as loss function in [30], an auxiliary loss
based on the derivable DRR computation [11] is introduced as

Ldrr = E
{
Fdrr(h(ℓ))−Fdrr(ĥ(ℓ))

}
, (2)

Fdrr(Y (ℓ)) = 10 · log10
∑ℓ=ℓd

ℓ=1 Y 2(ℓ)∑ℓ=L
ℓ=ℓd+1 Y

2(ℓ)
, (3)
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where Fdrr(Y ), Y = h or ĥ denotes the DRR formula and
ℓd represents the boundary sample separating the direct sound
from RIR.

If the discriminator D is applied, the adversarial loss can
be further exploited during training stage. Inspired by LS-
GAN [23] in which the loss function can stabilize the training,
and CGAN [28] with conditional loss for one-to-one issue, we
formulate the generator loss Lgen and the discriminator loss
Ldis with the insertion of the embedding z as

Lgen = E
{
(D(ĥ(ℓ), z)− 1)2

}
, (4)

Ldis = E
{
(D(h(ℓ), z)− 1)2

}
+ E

{
(D(ĥ(ℓ), z)2

}
. (5)

As a result, the loss function for the proposed segmental gener-
ative network can be rewritten as

Ltotal = λsdr · Lsdr + λdrr · Ldrr + λgen · Lgen , (6)

where factor λ controls the contribution of respective loss func-
tion, e.g., λgen = 0 is the case without the discriminator, and
λgen ̸= 0 is the case with the discriminator and the loss Ldis

in (5) is minimized simultaneously with minimizing Ltotal,
while λsdr , λdrr = 0 means that the generative network turns
to the unsupervised mode in terms of RIR generation.

3. Experimental Setup
The training data are synthesized using anechoic speech from
TIMIT corpus [31] (training set with 6300 utterances) and
a set of RIRs consisting of 1000 simulated and 940 real-
measured RIRs. The simulated RIRs are generated using image
method [8] with RT and DRR ranging from 0.3 s to 1.5 s and
from −15 dB to 10 dB, respectively. The real-measured RIRs
are collected from two open datasets including the Aachen Im-
pulse Response datasets [32] and the OpenAir database [33],
which cover 64 real scenarios with RT ranging from 0.1 s to
1.85 s and DRR from −6 dB to 15 dB. The training set is 47 h
in total and all the utterances are sampled at 16 kHz. To fa-
cilitate the network training, the input-target sequence pairs are
set to a constant length, i.e., the reverberant speech signal is
set to 2 s with the short-time Fourier transform (window length
of 512 and shift length of 256 with Hann window) to obtain
the spectrograms. The length of the estimated RIR is fixed to
L = 16384 (1.024 s), and we set S = 256 ,M = 128 result-
ing in N = 64 (see Sec. 2.2). The embedding dimension Z
is initially set to 128, and an ablation study will be carried out
with different values (see Sec. 4.2). The boundary sample ℓd
in (3) is chosen as the index of 2.5ms according to [13]. The
initialized learning rates for the encoder, the segmental genera-
tor and the discriminator are 2e-5, 4e-5, 1e-5, respectively, and
we halve the rates when validation loss does not decrease until
100 epoch. The amount of the proposed segmental generative
network parameters is 6.5 Million, and the real-time factor, cal-
culated as the time of processing the complete RIR, is 0.09 on
Intel Xeon CPU E5-2682 v4 (2.50 GHz) with Python imple-
mentation.

To guarantee non-overlap between training and test sets, the
anechoic speech signals for test are taken from the TIMIT eval-
uation set, including 1960 utterances. In terms of simulated and
real-measured RIRs, two test sets are created: 1) simulated test
set with 14 simulated RIRs generated using image method but
with different room parameters from the training set; 2) real
test set with 14 measured RIRs from the ACE challenge test

scenarios [13]. Each RIR is convolved with 200 (orderly se-
lected) utterances from the TIMIT evaluation set, resulting in
2800 utterances (3.2 h) in each test set. Note that noises are not
considered yet in this work which will be carried out in future
work.

The estimation error eY = Ŷ − Y , i.e., the difference be-
tween the estimated value and the ground truth with Y denoting
either the RIR, the RT or the DRR is used as evaluation metrics.
The root mean squared error (RMSE) is reported for each mea-
sure (RMSERIR, RMSERT and RMSEDRR, respectively),
as well as the Pearson correlation coefficients ρRT, ρDRR be-
tween estimated and true parameters (higher ρ towards 1 ex-
hibiting more accurate estimates) as suggested in the ACE chal-
lenge [13].

4. Results
4.1. Overall Performance

As seen from the upper rows in Table 1 with simulated test set,
when the auxiliary metrics-oriented loss function Ldrr in (6)
is applied (λdrr ̸= 0), performance of SG-RIR improves, par-
ticularly for the DRR estimation with nearly 1 dB decrease of
RMSEDRR. Generally speaking, the complex (real and imag-
inary) spectrogram as input provides better results compared
to the magnitude counterpart, indicating the importance of the
phase information required for the network to construct the
time-domain RIR. Performance can be further improved with
the attendance of the discriminator λgen ̸= 0 to assist the train-
ing of the generator, particularly for the RT estimation. How-
ever, it is also clearly observed that SG-RIR performance de-
grades significantly when the generative network turns to the
unsupervised mode (only with λgen in (6)). This indicates that
solely depending on the GAN loss, it is challenging for SG-
RIR to achieve an acceptable accurate RIR estimation, espe-
cially when the training data is not big enough (see Sec. 3).

Table 1: SG-RIR Performance in terms of different spectrogram
input and different λ in (6) w.r.t. the simulated (upper rows) and
the real (lower rows) test set.

Spectrogram λsdr λdrr λgen
RMSE ↓

RIR RT(s) DRR(dB)

magnitude 1.0 0.0 0.0 0.0082 0.226 6.874
magnitude 1.0 0.1 0.0 0.0080 0.225 5.910
complex 1.0 0.1 0.0 0.0075 0.248 3.985
complex 1.0 0.1 1.0 0.0076 0.165 3.917
complex 0.0 0.0 1.0 0.0780 0.654 11.215

complex 1.0 0.1 0.0 0.0083 0.255 4.747
complex 1.0 0.1 1.0 0.0087 0.176 3.985

Further, similar performance is achieved with the real test
set (lower rows in Table 1), which hints at the generalization ca-
pabilities of the proposed SG-RIR for both simulated and real-
measured RIRs. On average, it shows that SG-RIR can achieve
the blind RIR estimation with time-domain amplitude error of
0.008, RMSERT of 0.17 s and RMSEDRR of 3.95 dB.

We also take two estimation examples to show the output of
the proposed SG-RIR, as illustrated in Figure 2. It can be seen
that SG-RIR generally produces similar RIR as the ground-truth
in terms of the time-domain waveforms and the magnitude spec-
trograms. Compared to real-measured RIRs, it seems that SG-
RIR provides more realistic results with simulated RIRs. This is
more obvious with magnitude spectrograms where some irregu-
lar patterns in the real-measured RIR, especially at very low and
very high frequency bands, can not be fully constructed. This
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Figure 2: Visualization of one simulated RIR and one measured
RIR from the simulated and the real test set, respectively, as well
as the estimated counterpart by SG-RIR.

also partially explains the slightly superior performance with
simulated test set in comparison to the real test set in Table 1.
The interested readers are referred to a few more examples in
https://github.com/ffxiong/sg-rir/.

4.2. Embedding Analysis

We further inspect the embedding z produced by the encoder
(see Figure 1) with the simulated test set to analyze the under-
lying meaning of the learned vector. The UMAP tool [34] is
used to project the high-dimensional embedding (Z = 128)
into two-dimensional patterns for an easy visualization, as plot-
ted in Figure 3. It demonstrates that clear cluster exists within
the embedding space in terms of the ground-truth RT and DRR,
indicating that the encoder has learned implicitly to capture the
implicit knowledge about RIR based solely on the reverberant
speech. This is also expected, as these cues are closely related
to room acoustics for the RIR reconstruction and are invariant
to the speech/phoneme content.

Figure 3: Two-dimensional projections of the acoustic embed-
ding with the simulated test set in terms of the ground-truth RT
and DRR.

Moreover, different dimensions Z of the acoustic embed-
ding z are evaluated in terms of the averaged performance of
SG-RIR w.r.t. both the simulated and the real test set, as shown
in Figure 4. In general, performance improves as the dimension

Figure 4: Averaged performance of SG-RIR with both simulated
and real test set in terms of different dimensions of the acoustic
embedding.

Z increases. On the other hand, performance tends to degrade
for RT and DRR estimation when Z > 128, indicating that a
non-compact embedding could hinder the generalization of the
latter generator with the current network settings (see Sec. 3).

4.3. Performance Comparison with State-of-the-Art

To further verify the effectiveness of SG-RIR, two groups of
state-of-the-art models are employed for performance compari-
son, one group includes the models specially designed for blind
RT and DRR estimation, and the other group contains two mod-
els for blind time-domain RIR estimation. Note that all these
models were implemented by their respective authors and tested
on the same RIRs provided by the ACE challenge. Although the
speech material for the test utterances is different and the noise
scenarios are considered in the group of room parameter esti-
mation, the performance could be still relatively comparable to
some extent in terms of the RMSE and the correlation of RT
and DRR metrics. As summarized in the upper rows in Table 2
with the first model group, results show that a fairly good RT
estimator can achieve RMSERT and ρRT of smaller than 0.25 s
and larger than 0.70, respectively. Similarly, a fairly good DRR
estimator can achieve RMSEDRR and ρDRR of smaller than
4.0 dB and larger than 0.55, respectively. With the values of RT
and DRR directly derived from the estimated time-domain RIR,
SG-RIR performance indicates that the proposed SG-RIR could
be also considered as a good room parameter estimator. More-
over, in comparison to state-of-the-art RIR estimation models,
better performance in terms of RMSE and comparable perfor-
mance in terms of correlation can be achieved by SG-RIR for
both RT and DRR metrics.

Table 2: Performance comparison with other state-of-the-art
models including specially designed room parameter estimators
and RIR estimators w.r.t. the real test set consisting of the same
real-measured RIRs.

Model RMSERT ↓ ρRT ↑ RMSEDRR ↓ ρDRR ↑
QAReverb [35] 0.255 0.778 4.860 0.058
NIRA [12] 0.389 0.302 3.850 0.558
SRMR [36] 0.380 0.220 5.820 -0.084
ROPE [11] 0.285 0.716 4.810 0.556
jROPE [37] 0.288 0.758 4.090 0.621

Wave-U-Net [16] 0.367 0.324 7.019 0.681
FiNS [21] 0.237 0.837 6.605 0.640
SG-RIR 0.176 0.872 3.985 0.679

5. Conclusions
This paper proposes SG-RIR to accomplish blind estimation of
the time-domain room impulse response given a monaural re-
verberant speech signal. By designing a novel segmental op-
eration on the generative network and sharing the network pa-
rameters, our proposed model can directly produce the RIR with
long taps. Experimental results show that the encoder is capable
of extracting the compact acoustic embedding to represent the
attributes of the RIR, and a lower estimation error is achieved
by the segmental generator incorporating a metrics-inspired and
an adversarial loss function. Comparable results with individual
state-of-the-art approach of room acoustic parameter estimation
and RIR estimation on a public test set further verify the effec-
tiveness of the proposed framework. Future directions include
the modeling of noisy scenarios, the integration of data aug-
mentation, the subjective listening test, the lightweight network
design and the online implementation for practical applications.
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