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Abstract
We propose a deep neural network (DNN) based method that
provides a posterior distribution of mean-opinion-score (MOS)
for an input speech signal. The DNN outputs parameters of
the posterior, mainly the posterior’s mean and variance. The
proposed method is referred to as deep posterior MOS (DeeP-
MOS). The relevant training data is inherently limited in size
(limited number of labeled samples) and noisy due to the sub-
jective nature of human listeners. For robust training of DeeP-
MOS, we use a combination of maximum-likelihood learning,
stochastic gradient noise, and a student-teacher learning setup.
Using the mean of the posterior as a point estimate, we evalu-
ate standard performance measures of the proposed DeePMOS.
The results show comparable performance with existing DNN-
based methods that only provide point estimates of the MOS.
Then we provide an ablation study showing the importance of
various components in DeePMOS.
Index Terms: Speech quality assessment, deep neural network,
maximum-likelihood, voice conversion challenge.

1. Introduction
Deep neural network (DNN)-based (non-intrusive) speech qual-
ity assessment is a recent trend. Early works in this area in-
clude AutoMOS and QualityNet [1, 2]. AutoMOS uses a long-
short-time-memory (LSTM) [3] network in its architecture and
an end-to-end training approach of a speech clip and its mean-
opinion-score (MOS). QualityNet uses a bi-directional LSTM
and uses an end-to-end training approach for a speech clip and
its perceptual evaluation of speech quality (PESQ) score [4].

Contemporary works include DNSMOS, NISQA, and
MOSNet [5, 6, 7], all using the observed MOS as target out-
put. DNSMOS regularizes possible biases in the MOS score
using student-teacher networks [5]. NISQA uses attention [6],
an idea obtained from much cited [8]. MOSNet investigated
the effect on prediction with respect to architectural designs
and training parameters and found that a convolutional neural
network (CNN) together with a bi-directional-LSTM (BLSTM)
had the best performance [7].

Choi et. al. (2020, 2021) proposed two variants of MOSNet
[9, 10], one based on the idea of Global Style Tokens (GST)
[11], and the other a multi-task learning approach, with the ob-
jective to predict the speech quality and spoofing detection (i.e.,
identifying real or synthesized speech). They show that GST
improves performance, and that multi-task learning has a sig-
nificant effect on speech quality assessment [10].

There are also DNN-based methods that are conditioned on
the identity of a human listener at the time of training. Exam-
ples are mean-bias network (MBNet) [12] and listener depen-
dent network (LDNet) [13].

Motivation: All the aforementioned DNN-based methods pro-
vide a point estimate of the MOS for an input speech signal.
In this paper, our main contribution is to provide a DNN-based
posterior distribution estimate of the MOS. To the best of our
knowledge, DNN-based posterior of MOS was not considered
in the literature. We call the proposed method DeePMOS (Deep
Posterior MOS), which provides confidence in terms of stan-
dard deviation (or spread) across the posterior mean. The pos-
terior mean can be treated as a point estimate of MOS.
Contributions: We formulate a maximum-likelihood based op-
timization problem to train DeePMOS. Among many types of
DNNs, we use a recursive neural network (RNN), called bi-
directional LSTM, to handle variable lengths of speech sig-
nals. In our DNN architecture of DeepMOS, we use a suitable
combination of bi-directional LSTM and convolutional layers,
motivated by MBNet. In this context, we mention that the
work of [14] provides a posterior MOS using logistic regres-
sion and traditional model-driven speech features. On the other
hand, DNN-based methods, including the proposed DeePMOS,
exploit a complex non-linear relationship between MOS and
speech spectrogram by using data-driven features.

To train DeePMOS, we address two important aspects that
are inherently present in relevant training datasets collected
through crowd-sourcing. The aspects are limited-data and
noisy-data. The limited-data aspect arises because each speech
clip is labeled with scores from a limited number of judges
among many judges. The reason for limited judges is simple
- human judge-based labeling is costly. Due to the limited-data
aspect, it is hard to estimate the true MOS as a mean (average)
of scores from the limited number of judges and use in training.
On the other hand, the noisy-data aspect arises due to human
judges being noisy by nature; for the same speech clip judges
may provide different scores. Even the same judge may pro-
vide different scores to a speech clip at different times; scores
vary due to mood, work pressure, the nature of a person, etc. A
judge can be optimistic or pessimistic by nature. Further, the
set of judges may vary across clips in a training dataset.

We address the limited-data and noisy-data aspects in the
training of DeePMOS using stochastic gradient noise and a
student-teacher learning setup, mainly motivated by their suc-
cess in semi-supervised image classification [15]. We also pro-
vide an ablation study to show the importance of various com-
ponents in the training of the proposed method.

2. DeePMOS method
2.1. Problem formulation

Let x denote the features of a speech clip, and y denote the
MOS of the speech clip. The task is to estimate the posterior of
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the MOS for the speech clip x, as

pψψψ(y|x), (1)

where ψψψ are the parameters of the posterior distribution.
In this article we assume that the posterior is a Gaussian dis-

tribution, motivated by analytical tractability in training, mainly
solving the relevant optimization problem discussed later in
this section. A Gaussian distribution is fully described by its
mean and variance, i.e. pψψψ(y|x) = N (y;µ(x), σ2(x)) =
N (y;ψψψ(x)), where ψψψ(x) = {µ(x), σ2(x)}.

We use a DNN as a regression function fθθθ(x) that outputs
ψψψ(x), as

ψψψ(x) = fθθθ(x). (2)

The DNN is a ‘MOS-posterior-parameter providing regression
function’ with parameters θθθ. Using a training dataset comprised
of many pair-wise (x, y) examples, we could train the param-
eters θθθ of the regression function (DNN) by optimizing an ap-
propriate function in a maximum-likelihood manner.

Let N be the number of speech clips in the dataset and J
be the number of judges. We denote the n’th clip’s features by
xn. Further, let J = {1, 2, . . . , J} be the set of identity of the
judges. For each clip, a subset of all the judges provides scores.
We denote the subset of judges Jn ⊂ J for the n’th clip; that
means the indices of the judges who scored the n’th clip are kept
in the set Jn. The subset Jn varies across clips, and ∪Nn=1Jn =
J . Let sjx denote the score of the j’th judge for the speech clip’s
features x, where j ∈ J . Now, let the set of scores for the n’th
clip be denoted by Sn = {s(j)xn ; (j) ∈ Jn}; here s(j)xn is the
score of the n’th clip by (j)’th judge of the subset Jn. The
dataset available to us is D = {(xn,Sn,Jn)}Nn=1.

In our problem setup, |Jn| ≜ |Sn| is small, where |.| de-
notes the cardinality of a set. That means each clip has few
scores. This is the limited-data aspect of the dataset D. For ex-
ample, the dataset we for our experiments has at most 4 scores
per clip, meaning |Sn| ≤ 4, for all n. Moreover, the scores s(j)n
are noisy due to human nature, leading to the noisy-data aspect.
Let the true MOS of the n’th clip be denoted by yn, which is
unknown. Then a standard estimation of yn is an average over
the available scores, i.e.

ỹn =
1

|Sn|
∑

s
(j)
xn∈Sn

s(j)xn
. (3)

Due to the two mentioned aspects, the estimate ỹn is expected
to be noisy.

Using the dataset D, we can create a new dataset D1 =
{(xn, ỹn)}Nn=1, and then use the new dataset for an end-to-end
training of a suitable regression function fθθθ(x). The regression
function can be realized using a suitable DNN. The parameters
θθθ of DNN can be learned by maximizing the likelihood function

argmax
θθθ

log
N∏

n=1

pψψψ(y = ỹn|xn) = N (ỹn;ψψψ(xn) = fθθθ(xn)). (4)

2.2. DeePMOS Architecture

DeePMOS uses a spectrogram as input. The DNN architecture
of DeePMOS is similar to the MeanNet used in MBNet [12],
except that instead of having only a MOS prediction ŷ we use
two prediction heads in our design: one predicts a mean esti-
mate µ̂y and the other predicts a non-negative variance estimate

Figure 1: DeePMOS Architecture

σ̂2
y , to describe the posterior MOS with a Gaussian distribution.

This architectural design is motivated by the field of spatiotem-
poral attention [16], where an LSTM has been used for tempo-
ral attention. The architecture of DeePMOS can be conceptu-
ally viewed as a special case of the Mixture Density Network
[17, 18], here only using one Gaussian for the output distribu-
tion, but exploiting the power of modern DNNs.

Fig. 1 shows the layer structure of DeePMOS, whose main
components are 12 convolutional layers followed by a bi-
directional LSTM. The prediction head consists of two separate
networks, each having 2 fully-connected layers, and the one for
variance prediction has an extra ReLU [19] activation function
to make the prediction non-negative.

The model is designed to take 257-dimensional spectro-
gram features xn of any length T as input, and two scalar se-
quences µ̂T (xn), σ̂2

T (xn) of the same length will be generated.
The estimated mean µ̂(xn) and variance σ̂2(xn) for the whole
clip is then obtained by averaging over the sequence length.

2.3. DeePMOS Training

At training time, the main objective is to maximize the log-
likelihood function in (4). Since we fit ỹn with a Gaussian dis-
tribution, this gives

pψψψ(y = ỹn|xn) = 1

σ̂(xn)
√
2π
e
− 1

2σ̂2(xn)
(µ̂(xn)−ỹn)2

, (5)

which turns the maximization of the likelihood into minimizing
the Gaussian negative log-likelihood loss (GNLL loss)

argmin
θθθ

N∑

n=1

1

2

[
log σ̂(xn)

2 +
(µ̂(xn)− ỹn)

2

σ̂2(xn)

]
. (6)

Due to the noisy nature of the labels ỹn, we introduce stochastic
gradient noise (SGN) [20] in training. Instead of directly using
ỹn as the targets, we perturb these values with Gaussian noise.
At each iteration, we draw an independent random Gaussian
noise sample z ∈ N (0, σ2

z) for each clip and train on the new
labels

ỹzn = ỹn + z. (7)

We use σ2
z = 0.01 by default, which is chosen from a small

hyperparameter-tuning experiment on the validation set.
Another concept we used in our training is the mean-teacher

approach [15], a student-teacher framework. The reason for
using it is to provide robust learning in presence of noisy la-
bels. We apply it in the following manner. First, two DeePMOS
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Figure 2: Illustration of the teacher-student setup.

models are initialized, with one called the teacher model fθθθ′(·)
and another being the student model fθθθ(·). At initialization,
the teacher model would copy the student model’s parameters.
Then, during training time the student model does normal back-
propagation to update the parameters θθθ, while the teacher model
also does normal back-propagation but also updates its parame-
ters θθθ′ with respect to an exponential moving average (EMA) of
the student’s parameters. That is, after each training batch, we
let

θθθ′ = αθθθ′ + (1− α)θθθ, (8)

where 0 ≤ α ≤ 1 is a hyperparameter. In this way, the teacher
model acts as an ensemble of the student model at different time
stamps [15], with the purpose of increasing robustness to noisy
labels. Figure 2 shows an illustration of the setup.

We design our overall training loss function as a weighted
sum of several components

L(θ, θ′θ, θ′θ, θ′) = Ls + λtLt + λcLc, (9)

where Ls is the GNLL loss for the student model, Lt is the
GNLL loss for the teacher model, and Lc is a consistency loss.
The consistency loss Lc is defined as

Lc =
N∑

n=1

∥fθθθ(xn)− fθθθ′(xn)∥2, (10)

which is the mean square error (MSE) loss between the out-
puts of the student model and the teacher model. We followed
the design in MBNet to use per-frame losses by replicating the
target ỹn to the same length of the model output, which is the
number of frames in the input feature xn. Here λt and λc are
both hyperparameters, chosen by cross-validation.

2.4. DeePMOS Inference

At inference time, our model naturally predicts the distribution
of MOS yn for each input feature xn as a Gaussian distribution
with parameters µ̂(xn), σ̂2(xn) obtained from the network out-
put. If a point estimate is required, a maximum likelihood esti-
mator of yn is obtained by

ŷn = max
yn

p(yn|µ̂(xn), σ̂2(xn)) = µ̂(xn), (11)

which is the predicted mean value for the Gaussian distribution.
We use this point estimate later in comparison with other DNN-
based methods.

Table 1: 25%−, 50%−, and 75%−quantiles of the likelihood
on the test data, using the prior and posterior distributions.

25%-quantile Median 75%-quantile

Prior 0.210 0.343 0.421
Posterior 0.158 0.426 0.654

Table 2: Comparison of DeePMOS with other methods. Bold-
face numbers highlight the best value in the respective column.

Utterance-level System-level
Model MSE LCC SRCC MSE LCC SRCC

Not simulated. Results quoted from literature.
MOSNet [10, 9] 0.448 0.651 0.619 0.039 0.966 0.924

Simulated in our experiments.
MBNet [12] 0.713 0.662 0.632 0.309 0.943 0.943
LDNet [13] 0.428 0.680 0.644 0.023 0.984 0.963
DeePMOS 0.497 0.662 0.628 0.055 0.981 0.963

3. Experiments
In this section we evaluate DeePMOS 1 and compare it with
several existing methods, using appropriate datasets and perfor-
mance measures.

3.1. Datasets

We use Voice Conversion Challenge 2018 (VCC2018) [21]
dataset as a benchmark. This standard dataset consists of 20 580
speech clips collected from 38 different voice conversion (VC)
systems. Every speech clip was rated by at most 4 judges on a
scale of 1 to 5 at discrete values based on the assessment of the
spoken words, and in our case, we use the average of the scores
as the training target ỹn.

We split the total dataset into training, validation, and test
sets containing 13 580, 3 000, and 4 000 speech clips, respec-
tively. The model performance to predict the point estimate is
evaluated on two levels - the utterance level and system level,
as per [7, 12, 13]. On the utterance level, the point estimate is
given by µ̂(xn), and we measure the performance per speech
clip using suitable performance measures. On the system level,
the performance is about predicting the average of the speech
quality for all speech clips belonging to a VC system. That is,
the 38 systems partition the data, and the model point estimate
prediction is given by the average prediction over a partitioned
set. The performance is then measured on the 38 scores (one
per system): the average predicted score to the average of the
observed MOS scores per VC system, using appropriate perfor-
mance measures.

3.2. Feature Extraction

The speech clips were downsampled to 16 kHz, and we used
a spectrogram of it as feature input. In the spectrogram com-
putations, we used 32ms window length and 8ms window
shift. Each signal was preprocessed with repetitive padding to
the longest signal duration, in order to stabilize computation in
batch normalization [22] layers, as per [12].

1https://github.com/Hope-Liang/DeePMOS
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Figure 3: Prior and posterior distributions of MOS. (a) His-
togram of the MOS with mean 2.902 and standard deviation
0.888. This is a prior distribution. (b) Posterior of MOS for a
speech clip, with mean 2.984 and standard deviation 0.585. (c)
Posterior of MOS for another speech clip, with mean 2.131 and
standard deviation 0.540.

Figure 4: Visualization of prediction results. (a) Scatter plot
between ỹ and µ̂(x). (b) Histogram of predicted standard devi-
ation σ̂(x) against the prior standard deviation 0.888.

3.3. Results

We trained DeePMOS on VCC2018 for 60 epochs with Adam
[23] optimizer, a learning rate of 10−4, weight decay of 10−5,
and dropout of 30%. For the loss function in Equation (9), we
selected the hyperparameters λt = 1 and λc = 0.5 through
cross-validation. The teacher model used α = 0.99 for the first
five epochs in the training phase since the student model has a
faster learning curve in the beginning, and after the five epochs,
we used α = 0.999. The model selected was the teacher model
with the highest linear correlation coefficient (LCC) on valida-
tion data, where testing on validation data was performed after
each epoch. We trained the model using a single Nvidia A100
40GB GPU card and it takes roughly 4 hours per train.

We first examine how the posterior distribution of MOS
looks against the prior. In Fig. 3(a), a histogram of ỹ for the
test set is plotted, which provides an idea of the prior of MOS.
Fig. 3 (b) and (c) provide the predicted Gaussian posterior for
two randomly picked speech clips. We found that the posterior
standard deviation is smaller than the prior standard deviation.

We now visualize prediction results for the test set. In
Fig. 4(a), we show a scatter plot to demonstrate correlations
between the observed MOS ỹ and its point estimate ŷ = µ̂(x).
As each speech clip has scores from at most 4 judges, and the
observed MOS ỹ shows discrete nature due to the finite set
of values in the interval [1, 5]. Then, in Fig. 4(b), we show
a histogram of the posterior’s standard deviation σ̂(x). In the
same plot, we show the standard deviation of the prior, which is
0.888. Note that the posterior standard deviation is less than the
prior standard deviation.

In order to quantify the performance of DeePMOS in the
probabilistic sense, we compute the likelihood on the test data,
using the prior distribution and the posterior distributions. We
use a Gaussian prior, where the parameters are inferred using
maximum likelihood given the MOS data. The result is shown
in Table 1. The median and 75%−quantile, the posterior dis-

Table 3: Ablation study of DeePMOS, with the removed compo-
nent listed in the leftmost column. Boldface numbers highlight
the best value in the respective column.

Utterance-level System-level
DeePMOS MSE LCC SRCC MSE LCC SRCC

Normal 0.497 0.662 0.628 0.055 0.981 0.963
- SGN 0.517 0.667 0.631 0.084 0.981 0.950
- teacher 0.670 0.646 0.614 0.220 0.976 0.946
- Lc 0.715 0.641 0.605 0.284 0.968 0.929
- Lt 0.528 0.658 0.624 0.076 0.980 0.934
- Lc, Lt 0.594 0.650 0.616 0.166 0.968 0.941

tribution given speech clip increases the likelihood compared
to using the prior, which means DeePMOS provides a useful
posterior.

3.3.1. Comparison with other methods

To compare with other methods like MOSNet [7] and LD-
Net [13], we have to use the point estimate-based stan-
dard performance measures. Three widely referred perfor-
mance measures in this area are the mean-square-error (MSE),
linear-correlation-coefficient (LCC) [24], and Spearman’s-
rank-correlation-coefficient (SRCC) [25].

In our experiments, while we have used all three perfor-
mance measures stated above, relatively higher importance was
given to LCC and SRCC measures following [12]. The com-
parison results are given in Table 2, with the best performance
scores marked in bold font. We see that our DeePMOS out-
performed basic MOSNet and MBNet in terms of almost all
performance measures, meanwhile giving a comparable perfor-
mance with the state-of-the-art LDNet model on both utterance
and system levels.

3.3.2. Ablation study

To investigate the effect of different components used in DeeP-
MOS, we conducted an ablation study. We trained the model
under each configuration six times on the VCC2018 dataset and
took the average of the performance measures for each run. The
results are reported in Table 3, with the removed component
listed to the left.

We found that the teacher-student method and the consis-
tency loss part are important for boosting performance, and the
teacher model loss also helped find a better optimum. The ex-
istence of SGN on the labels stabilized the training by reducing
the variance in the performance measures. Although it gives
a slight decrease in the utterance-level LCC and SRCC, it also
improved the system-level performance to a notable extent.

4. Conclusion
The approach of using appropriate distributions as posterior,
such as Gaussian, which have few parameters is good where
DNNs can provide the parameters. Learning of DNN param-
eters can be formulated using the maximum-likelihood based
optimization principle. It is also important to use appropriate
training and perform an ablation study to show the importance
of participating components. Overall, DeePMOS is highly com-
petitive vis-a-vis other DNN-based MOS prediction methods
(which only provide point estimates), in addition to giving an
interpretable posterior.
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