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Abstract
Audio-visual person recognition (AVPR) has received ex-

tensive attention. However, most datasets used for AVPR re-
search so far are collected in constrained environments, and thus
cannot reflect the true performance of AVPR systems in real-
world scenarios. To meet the request for research on AVPR
in unconstrained conditions, this paper presents a multi-genre
AVPR dataset collected ‘in the wild’, named CN-Celeb-AV.
This dataset contains more than 420k video segments from
1,136 persons from public media. In particular, we put more
emphasis on two real-world complexities: (1) data in multi-
ple genres; (2) segments with partial information. A compre-
hensive study was conducted to compare CN-Celeb-AV with
two popular public AVPR benchmark datasets, and the results
demonstrated that CN-Celeb-AV is more in line with real-world
scenarios and can be regarded as a new benchmark dataset for
AVPR research. The dataset also involves a development set
that can be used to boost the performance of AVPR systems in
real-life situations. The dataset is free for researchers and can
be downloaded from http://cnceleb.org/.
Index Terms: audio-visual, multi-genre, person recognition,
dataset

1. Introduction
Biometric recognition is an automatic process of measuring and
analyzing human biometrics and authenticating personal iden-
tity [1]. Voice and face are among the most popular biomet-
rics, partly because they can be collected remotely and non-
intrusively. In the past few years, with the emergence of deep
learning and data accumulation, performance of the two bio-
metric recognition techniques, i.e., speaker recognition (SR)
and face recognition (FR), has been remarkably improved and a
wide range of applications has been fostered [2, 3, 4, 5, 6].

Despite the impressive progress, either SR or FR suffers
from their respective practical difficulties. For audio-based SR,
challenges are content variation, channel discrepancy, additive
noise, spontaneous speaking styles, and even the change in
physiological status. For video-based FR, challenges can be
from varied illumination, changed position, and accident occlu-
sion. Researchers have a long-term journey to combine the two
modalities, primarily motivated by the fact that audio and vi-
sual information are complementary, as has been demonstrated
by some psychological experiments [7, 8, 9].

For instance, with the assistance of facial information, hu-
mans could do significantly better on auditory perception tasks
than if only audio signals were available. Take another exam-
ple, when a person wears a mask, the face is obscured, which
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increases both false acceptance and false rejection of face recog-
nition; while this mask has a slight effect on the voice, making
speaker recognition more suitable for person authentication. A
straightforward idea is to integrate the complementary informa-
tion of audio and visual modalities to construct an audio-visual
person recognition (AVPR) system, that is supposed to be more
robust, especially in unconstrained conditions [10]. To answer
such requirement for multi-modality person recognition, NIST
kicked off an audio-visual challenge [11] in SRE 2019, and keep
the effort in SRE 2021 [12].

Existing AVPR research takes two approaches. The hybrid
approach trains SR and FR models separately and combines
their decisions by either score fusion [13, 14] or embedding in-
tegration [15]. An advantage of this approach is that the SR and
FR models can be built using techniques and databases devel-
oped in their respective fields, though the shortcoming is that
the intrinsic relation between the two modalities is not fully
utilized. The second approach is multi-modal joint modeling.
For example, Qian et al. [16] designed audio-visual neural nets
based on either feature-level or embedding-level concatenation.
Tao et al. [17] proposed a cross-modal discriminative neural net
to learn shared audio-visual embeddings, and use them to en-
hance a score-fusion AVPR.

All the above research reported promising performance.
For example, Qian et al. [16] reported an EER reduction from
3.04 (V) and 1.62 (A) to 0.55 (A+V) on the VoxCeleb1 test set.
However, all these studies are based on relatively constrained
data, for which we mean (1) the data is clean and involves lim-
ited variations; (2) the information of the two modalities is fully
exposed. We argue that the results based on this type of data
cannot reflect real-life complexity, e.g., in unconstrained envi-
ronments where information of one or two modalities is cor-
rupted or lost.

To facilitate AVPR research in solving real-world chal-
lenges, we publish a new AVPR dataset named CN-Celeb-AV
in this paper. The new dataset follows the principles of CN-
Celeb [18] in data collection but contains both audio and vi-
sual data. The entire dataset consists of two parts, one is the
‘full-modality’ part that involves full AV information and one
is the ‘partial-modality’ part that involves a large proportion of
video segments whose audio or visual modality is corrupted or
missing. The entire dataset covers 11 different genres in real-
world scenarios (as in CN-Celeb1/2) and contains more than
420k video segments from 1,136 persons (e.g., Chinese celebri-
ties, video bloggers, and amateurs). We hope that these distinct
properties permit CN-Celeb-AV a suitable benchmark evalua-
tion set for AVPR with real-world complexity.
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Table 1: Comparison of existing AVPR datasets. * means information is unavailable.

Dataset # of Spks # of Segments # of Hours Genre Uncertainty Status
M2VTS [19] 37 * * indoor constrained Private
XM2VTS [20] 295 * * indoor constrained Not Free
VidTIMIT [21] 43 430 0.5 indoor constrained Public

MOBIO [22] 150 28,800 61 indoor semi-constrained Public
MSU-AVIS [23] 50 2,260 3 indoor semi-constrained Public
AveRobot [24] 111 2,664 5 indoor semi-constrained Public
WeCanTalk[25] 202 3,199 * telephone and video semi-constrained Private

VoxCeleb1 [26] 1,251 153,516 352 mostly interview unconstrained Public
VoxCeleb2 [27] 6,112 1,128,246 2,442 mostly interview unconstrained Public
JANUS (CORE) [13] 360 1,593 * multi genres unconstrained public
VAST (SID) [28] 300 * * multi genres unconstrained Private
CN-Celeb-AV (Ours) 1,136 420,055 669 multi genres unconstrained Public

2. Review of AVPR datasets
This section presents a brief review of existing AVPR datasets
and compares them with CN-Celeb-AV. The main information
is summarized in Table 1, and the following are some details.

Early work of AVPR focused on constrained conditions
where speech content, face pose, environment, and devices are
strictly controlled. The representative datasets in this stage
involve clear faces and clean voices, such as M2VTS [19],
XM2VTS [20], and VidTIMIT [21]. Further studies considered
semi-constrained conditions, in which faces may be occluded
and voices may be corrupted by noise or non-target speech, but
the recording environment and speech content are often con-
trolled. Typical datasets in this stage include MOBIO [22],
MSU-AVIS [23], AveRobot [24] and WeCanTalk [25].

Recently, the research focus has shifted to unconstrained
conditions. A key feature of recognition tasks in these con-
ditions is that the recording environment and device are fully
unconstrained, and the target person may be unaware of being
recorded. VoxCeleb [26, 27] is a typical dataset with such fea-
tures. The data was collected from YouTube videos that were
recorded by diverse devices in various conditions for different
purposes. A key issue of VoxCeleb is that the videos are mostly
from interview programs which are a relatively simple genre
and not fully ‘in the wild’.

CN-Celeb-AV approaches real-world complexities in two
aspects: it involves data from multiple genres, and audio and
visual information may be partially available. Some recent
datasets involve multi-genre data, e.g., JANUS Multimedia
dataset [13] and VAST (SID) [28], but they are either small or
in private status.

3. CN-Celeb-AV
3.1. Data description

The purpose of the CN-Celeb-AV dataset is to evaluate the true
performance of AVPR techniques in unconstrained conditions
and provide a standard benchmark for AVPR research. All the
data was collected from Bilibili1, a popular Chinese public me-
dia. In total, it contains more than 420k video segments (669
hours) from 1,136 people (mostly Chinese celebrities) and cov-
ers 11 genres as in CN-Celeb [29].

Specifically, CN-Celeb-AV is composed of two parts. The
first ‘full-modality’ part is the audio-visual version of the audio-
only CN-Celeb1 [29] dataset. Most of the data in this part con-

1https://www.bilibili.com/

tains both audio and visual information. It is split into a de-
velopment set and an evaluation set, which involve 689 people
and 197 people respectively, following the original split of CN-
Celeb1 [29]. The two sets are denoted by CNC-AV-Dev-F and
CNC-AV-Eval-F respectively, where ‘F’ means ‘full modality’.

The second ‘partial-modality’ part is a set of newly col-
lected data that involves a large proportion of video segments
whose audio or visual information is corrupted or fully lost. For
example, the face and/or the voice of the target person may dis-
appear shortly, be corrupted by noise, or even be fully unavail-
able. We denote this set of data by CNC-AV-Eval-P, indicating
that it is an evaluation set, and with partial AV information. It
involves 308k video segments (427 hours) collected from 250
people. The duration of each video segment is 5 seconds, and
the number of genres of each person is more than 3.

Table 2 presents the data profile of CN-Celeb-AV, and Ta-
ble 3 presents the data distribution over genres. Note that the
persons in CNC-AV-Eval-P were removed from CNC-AV-Dev-
F and CNC-AV-Eval-F, which is the reason why the data in these
two sets are smaller than those in the corresponding develop-
ment and evaluation sets of CN-Celeb1.

Table 2: The data profile of CN-Celeb-AV

CNC-AV-Dev-F CNC-AV-Eval-F CNC-AV-Eval-P

# of Genres 11 11 11
# of Persons 689 197 250
# of Segments 93,973 17,717 308,365
# of Hours 199.70 41.96 427.75

Table 3: The distribution over genres of CN-Celeb-AV

Genres # of Spks # of Segments # of Hours

Overall 1,136 420,055 669.41

Advertisement 45 3,888 5.44
Drama 136 7,118 7.70
Entertainment 555 40,728 59.98
Interview 907 155,462 261.97
Live Broadcast 269 57,984 84.62
Movie 66 2,405 3.01
Play 104 6,485 8.27
Recitation 45 3,457 5.99
Singing 384 24,752 43.98
Speech 214 61,503 109.25
Vlog 158 56,273 79.20
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3.2. Features of CN-Celeb-AV

As have been shown in Table 1, CN-Celeb-AV possesses sev-
eral desired features that make it suitable for AVPR research to
tackle real-world challenges.
• Almost all the video segments involve real-world uncertain-

ties, e.g., content, noise, channel, overlap, speaking style
variations in voices and pose, illumination, expression, res-
olution, and occlusion in faces.

• There is a large proportion of single-speaker multi-genre
data from many media files, allowing cross-genre and cross-
session tests. These tests match real-world situations.

• Information is partially observed in some video segments,
especially in CNC-AV-Eval-P, making it suitable for testing
the performance of AVPR systems in real-life complex con-
ditions, which is the situation where AV multi-modal tech-
niques are expected to get the most value.

3.3. Collection pipeline

The collection pipeline of CNC-AV-Dev-F and CNC-AV-Eval-
F is the same as in CN-Celeb1 [29]. For CNC-AV-Eval-P, the
situation is more complex as video segments with partial in-
formation need to be collected, leading to an increased burden
on both automatic collection and human annotation. We there-
fore designed a simplified pipeline that made the data collection
highly efficient.

CNC-AV-Eval-P was collected in three steps: (1) candidate
videos were manually selected; (2) an automatic process to ex-
tract candidate segments; (3) human check to confirm valid seg-
ments. This process is much faster than a purely human-based
annotation and also avoids potential errors caused by a purely
automated process. We highlight that human check is important
in our case: because the multi-genre data is very complex, the
automatic process often makes mistakes. We also developed a
user-friendly crowd-sourcing platform to assist with video an-
notation and human check. The source code of this platform
will be published on the dataset webpage to help readers collect
their own data. The illustration of the collection pipeline is pre-
sented in Figure 1 and the corresponding steps are summarized
as follows.
• Step 1. Manually video selection. (a) Select a person of

interest (POI) who can be a celebrity or an uploader on Bili-
bili (a platform similar to YouTube), and then select multiple
videos of the person as candidate videos. Annotate the genre
type of each video. (b) For each video, grab a clear face im-
age of the POI (POI face). Further select 10 short speech
segments, each being 1-second long and containing the clear
voice of the POI. Merge the 10 short segments into a 10-
second POI speech. The POI face and POI speech are used
in STEP 2 to select video segments containing the POI. Note
that all the work in this step is performed by humans.

• Step 2. Automatic data processing. (a) Divide each candi-
date video into short segments of 5 seconds. Each segment
contains 5 images and 500 speech frames. (b) For each seg-
ment, use the MTCNN model [30] to perform face detec-
tion and alignment, and then use the InsightFace model [6]
to perform face verification. During the verification, the POI
face and the face in each image are compared, and the max-
imum cosine distance is used as the detection score. (c)
For each segment, use the ECAPA-TDNN model [31] from
the SpeechBrain toolkit [32] to perform speaker verification,
using the POI speech obtained in Step 1 as the enrollment
speech. (d) Delete segments whose detection scores fall in

STEP 1. Manual video selection

one clear POI face

10-second clean POI speech

a POI video

Input: a POI video

Output: one clear POI face and 10-second clean POI speech

STEP 2. Automatic data processing

Input: a POI video, one clear POI face, 10-second clean POI speech

Output: POI video segments produced automatically

POI video segments

Face Detection

(MTCNN)

Speaker Verification

(ECAPA-TDNN)

Face Verification

(InsightFace)

STEP 3. Human check with online auxiliary system

Input: POI video segments produced by STEP 2

Output: POI video segments checked by humans

Accept Reject Delete Uncheck

Figure 1: Illustration of the collection pipeline.

the lowest 15% with both the audio and visual modalities.
The deleted segments are shown as yellow blocks in the an-
notation platform. All the rest segments are shown as white.

• Step 3. Human check. (a) Human annotators check each
segment and label them as accepted (shown as green) or re-
jected (shown as red). The acceptance criterion is that hu-
mans can tell POI’s existence with information from at least
one modality. (b) To reduce human workload, an auxil-
iary system was designed to label low-confidence segments
(shown as yellow) and update the threshold for yellow seg-
ments after each human annotation. (c) Double-check all the
accepted segments by a senior annotator to guarantee data
quality.

It is worth mentioning that in STEP 2, the audio and vi-
sual modalities are processed in parallel and symmetrically, thus
avoiding bias towards a particular modality. As far as we know,
many existing datasets did not consider this modality bias.

4. Experiments
4.1. Data

In this section, we conduct AVPR experiments with two CN-
Celeb-AV evaluation sets and other two popular datasets: MO-
BIO [22] and VoxCeleb1 [26]. We choose these two datasets
for two reasons, one is that they have been widely used by re-
searchers, and the other is that they released official trials, mak-
ing the comparison easy. For the two comparative datasets, we
use the official trials defined by the data provider. For CNC-
AV-Eval-F/P, we choose video segments from a genre without
too much complexity (such as interview and speech) for each
POI. The POI face and speech of this video are used as enroll-
ment data for that POI, and all the remaining video segments
are used for testing.

We argue that this trial design is in line with real-world
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scenarios where users are often enrolled in a constrained con-
dition while tested in unconstrained environments. Due to the
large amount of test utterances in CNC-AV-Eval-P, we construct
the negative pairs for this evaluate set by a sampling approach.
Specifically, for each POI, we randomly sample negative pairs
three times the positive pairs. The trials of the 4 datasets are
listed in Table 4.

Table 4: The profile of 4 evaluation sets

Dataset # of Spks # of Target # of Nontarget

MOBIO 58 6,090 187,530
VoxCeleb1-O 40 18,860 18,860
CNC-AV-Eval-F 197 17,693 53,079
CNC-AV-Eval-P 250 308,365 924,802

4.2. Model setting

4.2.1. Speaker verification

We employ the ECAPA-TDNN model [31] in the SpeechBrain
toolkit [32] for speaker verification. The model is trained with
VoxCeleb1.dev and VoxCeleb2. All the speech data are first
preprocessed by VAD and then fed into ECAPA-TDNN to ex-
tract speaker embeddings. The cosine similarity is used to score
the trials.

4.2.2. Face verification

To perform face verification, we sample images every 25
frames. For each sampled image, RetinaFace [33] is used to
perform face detection and InsightFace [6] is used to extract
face embeddings, and verification scores are based on cosine
similarity. Since there are multiple face images in both enroll-
ment and test videos, a pooling scheme is required to make full
use of these images, either at the embedding level or the score
level.

For MOBIO and VoxCeleb1.O, only the target person may
appear in the video. We therefore simply average the face em-
beddings of all the sampled images to represent a video for ei-
ther enrollment or test.

For CNC-AV-Eval-F/P, the POI face is used for enrollment.
During the test, multiple faces may appear in the test video.
We compare the person vector to the face embedding of every
sampled image, and the maximum cosine similarity is used as
the verification score.

4.2.3. System fusion

Simple score fusion is used to fuse the audio and visual modal-
ities. Calibration is a standard technique to perform such fu-
sion. In a nutshell, calibration maps raw scores produced by
a decision system to log-likelihood ratios (LLRs) [34], The
LLRs have a clear probabilistic interpretation, making them the-
oretically suitable for combining decisions from different sys-
tems [35]. A CLLR-based calibration routine implemented in
the BOSARIS toolkit [36] is used to perform calibration. Once
the scores of the visual and audio streams are calibrated, we
simply average them to get the final score.

4.3. Results

The results in terms of EER(%) and minDCF(Ptar = 0.1) are re-
ported in Table 5. Firstly, we can see that both single-modal and
multi-modal systems achieve good performance on the MOBIO

and VoxCeleb1 datasets. This is expected since the information
is almost complete in these two datasets and the interference
is limited. In contrast, the performance on the two CNC-AV-
Eval datasets is much worse, especially with the visual modal-
ity. This is also not surprising, as the data in these datasets is
more complex, e.g., multiple faces may occur in the same frame
and the target face may be small or occluded. Since all these
complexities occur in real-life conditions, the results indicate
that the present person recognition techniques are still far from
perfect, either with audio or visual clues.

Secondly, it can be observed that the performance of multi-
modal systems is consistently better than single-modal systems
on all the datasets, demonstrating the benefit of multi-modal
processing. However, even with the AV models, the perfor-
mance of the two CNC-AV-Eval datasets are still poor, suggest-
ing further research.

Table 5: Results on different evaluation sets.

EER(%) / minDCF(Ptar = 0.1)

Audio Visual Fusion

MOBIO 2.48/0.146 0.79/0.035 0.25/0.009
VoxCeleb1-O 1.04/0.057 1.89/0.088 0.30/0.011
CNC-AV-Eval-F 14.98/0.458 20.25/0.600 11.96/0.371
CNC-AV-Eval-P 16.78/0.451 17.75/0.473 9.21/0.292

In the last experiment, we test the value of the released de-
velopment set CNC-AV-Dev-F. We simply use this set to train
two LDA models that project the audio and visual embeddings
respectively. For the audio stream, it reduces the dimension of
speaker embeddings from 192 to 128, and for the visual stream,
it reduces the dimension of face embeddings from 512 to 128.
The projected embeddings are then used to perform tests as in
the previous experiment. The results are shown in Table 6. It
can be seen that significant performance gains were obtained,
with both the two single-model systems and the fusion system.
This demonstrated the value of CNC-AV-Dev-F.

Table 6: Results on the two CNC-AV evaluation datasets with
LDA trained on the CNC-AV development set.

EER(%) / minDCF(Ptar = 0.1)

Audio Visual Fusion

CNC-AV-Eval-F 10.63/0.357 18.34/0.487 8.65/0.272
CNC-AV-Eval-P 13.97/0.390 15.43/0.436 7.44/0.246

5. Conclusion
We introduced CN-Celeb-AV, a free multi-modal dataset for
audio-visual person recognition research. This dataset con-
sists of one development set and two evaluation sets. The two
evaluation sets were designed to represent test conditions with
full-modality and partial-modality information respectively. We
compared the two evaluation sets with two existing AV datasets,
MOBIO and VoxCeleb1. Experimental results demonstrated
that CN-Celeb-AV represents more challenging real-life situ-
ations, and simply employing and combining the current SOTA
speaker and face recognition models cannot achieve satisfactory
results in this condition. Finally, we verified that the develop-
ment set of CN-Celeb-AV can be used to improve the perfor-
mance of AVPR system in real-life conditions.
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[36] N. Brümmer and E. De Villiers, “The bosaris toolkit: Theory, al-
gorithms and code for surviving the new DCF,” arXiv preprint
arXiv:1304.2865, 2013.

2122


