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Abstract
State-of-the-art end-to-end automatic speech recognition (ASR)
systems are becoming increasingly complex and expensive for
practical applications. This paper develops a high-performance
and low-footprint 4-bit quantized Conformer ASR system. A
key feature of the system design is to account for the fine-
grained, varying performance sensitivity at different Conformer
components to quantization errors. Neural architectural com-
pression and mixed precision quantization approaches were
used to auto-configure the optimal substructures and quanti-
zation bit-widths within each Conformer sub-module. Exper-
iments conducted on the 300-hr Switchboard data suggest that
the obtained auto-configured systems consistently outperform
the uniform precision quantized baseline Conformer of compa-
rable bit-widths in terms of word error rate (WER). An overall
“lossless” compression ratio of 16.2 times was obtained over
the 32-bit full-precision baseline while incurring no statistically
significant WER increase.
Index Terms: speech recognition, model quantization, neural
architecture search

1. Introduction
State-of-the-art end-to-end (E2E) automatic speech recogni-
tion (ASR) systems [1, 2, 3, 4, 5, 6, 7] are becoming increas-
ingly complex [8, 9, 10] and expensive for practical applica-
tions. An ultimate goal for resource-intensive deep-learning-
based AI applications, including E2E ASR systems, is to de-
rive “lossless” model compression approaches that allow high-
performance and low-footprint systems to be constructed1. To
this end, a powerful solution is to apply low-bit neural net-
work quantization techniques, which have attracted intensive
research interest in recent years and have successfully been
applied to a range of AI applications, including computer vi-
sion [12, 13, 14, 15, 16], language modelling [17, 18] and
speech recognition systems [19, 20, 21, 22]. Quantization
methods replace deep neural network model parameters of full-
precision floating points with quantized low-precision integer
values. This allows model sizes and inference cost to be aggres-
sively reduced for efficient implementations in FPGA systems.

Existing quantization studies for E2E ASR systems are pre-
dominantly uniform-precision-based. An identical setting of
quantization bit width, for example, 4-bit, is applied to all the
weight parameters [12, 22, 23]. However, prior research on time
delay neural network (TDNN) acoustic models [24] and Trans-
former or LSTM-RNN language models [18] have shown that
the ASR system performance sensitivity to quantization errors

1In all the experiments of this paper, “Lossless” compression is
achieved when no statistically significant (MAPSSWE [11], α = 0.05)
WER increase is observed after model compression.

varies among different internal components, and can be better
accounted for using non-uniform, mixed precision approaches.

This paper aims to develop an ultra-compact 4-bit quantized
Conformer-based E2E ASR system with high performance and
low footprint on the 300-hr Switchboard corpus. In contrast to
conventional uniform-precision-based quantization approaches,
the overall system design of this paper accounts for the fine-
grained, varying performance sensitivity of different model
components to architecture compression and parameter quan-
tization errors. The fundamental objective is to achieve the best
model size versus performance trade-off operating points by lo-
cally optimizing each Conformer model component layer’s ar-
chitecture size and quantization precision bit width. The over-
all system development comprises two major stages. In the
first stage, the model structural redundancy is minimized us-
ing automated neural architectural compression techniques. Pe-
nalized differentiable architecture search [25, 26] based neu-
ral architecture search (NAS) is applied to auto-configure the
hidden layer dimensionality within each Conformer Encoder
block. Inspired by the semi-orthogonal low-rank weight ma-
trix factorization technique adopted in TDNN-F [27], the feed-
forward sublayers’ weight parameter matrices are decomposed
into two low-rank matrices. Their respective bottleneck dimen-
sionalities are then auto-configured using NAS. The architec-
turally compressed full-precision system serves as a streamlined
starting point for the following mixed-precision quantization
stage. The optimal local bit-width configurations are learned by
minimizing the KL divergence measured sublayer-level perfor-
mance sensitivity to quantization. Quantization-aware training
(QAT) [28, 29] is also used to reduce the performance degrada-
tion in the quantized parameter estimation stage after the local
precision settings are determined.

The main contributions of the paper are summarized below:
1) To the best of our knowledge, this is the first work to

apply neural architecture compression, low-rank weight factor-
ization, and mixed precision quantization techniques to obtain
ultra-compact Conformer ASR systems. Both these individ-
ual techniques and their combination have not been previously
studied for Conformer ASR systems. Specifically, such com-
bination was previously studied only with hybrid TDNN ASR
systems [24]. In terms of individual techniques, the KL diver-
gence based automatically learned mixed precision quantization
approach was only studied for hybrid TDNN systems [24], tem-
poral convolutional network based speech separation [30] and
neural language models based on LSTMs and standard (non-
Conformer) Transformers [18]. Existing works on low bit pre-
cision quantization of Conformer (or other) ASR models largely
focused on uniformly or manually configured quantization pre-
cision settings [31, 32, 22, 33, 34, 35]. Other prior works on
quantization for computer vision tasks [12, 13, 14, 15, 16] lie
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Figure 1: A paradigm of Conformer based end-to-end ASR system with neural architecture compression applied to the feed-forward
modules (FFN) (in the green colored box) to locally select the dimensionality of either (a) the bottleneck subspace for their low-rank
factorized weight matrices (left bottom); or (b) that of their hidden layer outputs (right bottom); or both. (c) auto-configuration of local
bit-widths for each Encoder sub-module using the KL metric of Section 5.
in different application domains. Similarly, the automatic neu-
ral architecture compression method of this paper was previ-
ously only studied for hybrid TDNN ASR systems [24]. In this
paper, we aim to achieve the largest compression ratio while
incurring no statistically significant WER increase. Such objec-
tive substantially differs from that of conventional NAS based
auto-machine-learning tasks, which aim to find the best hyper-
parameters while taking no account of the trade-off between
performance and model size, whether the latter increases or oth-
erwise [36, 37].

2) In contrast to the use of Librispeech data in related prior
works [22, 35, 31, 34], where both the individual systems’
WERs and their differences are very small (e.g., varying be-
tween 2.0% and 3.1% in [22]; or between 2.78% and 4.03%
reported in [35] on test-clean data for Conformer systems),
we choose to use the benchmark Switchboard 300-hour dataset
where a larger disparity in WERs among different test sets can
better analyze the efficacy of different architecture compression
and quantization methods. This serves to provide valuable in-
sights for practical low-footprint Conformer ASR system de-
velopment targeting diverse ASR accuracy operating points. To
the best of our knowledge, this paper is the first work to de-
velop a “lossless” 4-bit compressed Conformer E2E ASR sys-
tem without statistically significant WER increase on the bench-
mark 300-hr Switchboard data.

2. Conformer ASR System Architecture
The convolution-augmented Transformer (Conformer) [9] is an
E2E ASR system combining convolution neural networks and
transformer modules [38] to capture both local and global de-
pendencies in audio sequences. As a key component, a Con-
former Encoder is built by multiple blocks stacked together,
with each block composed of the following modules in se-
quence: a feed-forward module (FFN), a self-attention mod-
ule (MHSA), a convolution module (Conv), and a second FFN
module (macaron-like) in the end. Among all these modules,
FFN modules account for a major part of an Encoder in terms
of the number of weight parameters. Particularly, it consists of a
linear layer followed by a Swish activation [39] and a dropout,
and then a second linear layer with a dropout. The first lin-
ear layer expands the model dimensionality (e.g., from 256 to
2048), and the second linear layer restores the dimensionality to
before. In addition, a post-layer normalization and residual con-
nections are applied to all Encoder blocks. An example Con-
former ASR system is shown in Fig. 1. To train a Conformer
model, a multitask criterion interpolation [40] between the CTC
and attention of the Decoder (i.e., a Transformer) error cost is
applied. This is given by

Lconformer = (1 − λ)Latt + λLctc, (1)

where λ is a constant and empirically set as 0.2 in this paper.

2.1. Semi-orthogonal Low-rank Factorized Conformer
As the linear layers in the FFN module primarily account for
the large model size of the Conformer. A simple way to com-
press the FFN modules is to reduce the hidden feature expansion
dimensionality directly. Another option is inspired by the semi-
orthogonal low-rank weight matrix factorization technique pre-
sented in [26, 27] for TDNNs. In [27], a large weight matrix is
factorized to two smaller factors (i.e., projection and affine ma-
trix), with one of the two constrained to be semi-orthogonal. For
example, W = AB, where W ∈ Rm×n,A ∈ Rm×k,B ∈
Rk×n, with B constrained to be semi-orthogonal, and k defines
the bottleneck dimensionality. An illustration of Conformer
FFN sublayer factorization is depicted in Fig. 1(a).

3. Neural Architecture Search
It is practically infeasible to manually search for an optimal
configuration of the Conformer Encoder hidden layer or bot-
tleneck dimensionality for large systems. In traditional stud-
ies, the commonly adopted uniform configuration fails to con-
sider the varying performance sensitivity of different compo-
nent configurations. To automatically learn a compressed and
streamlined architecture configuration for the Conformer sys-
tem, differentiable neural architecture search (DARTS) [25] is
used to optimize the dimensionality of 1) their hidden layer out-
puts (Fig. 1(b)); or 2) that of the bottleneck projection subspace
for their low-rank factorized weight matrices (Fig. 1(a)); or 3)
both 1) and 2). In DARTS, each candidate architecture in any
layer is assigned a trainable architecture parameter α,
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where ϕl
i denotes the i-th candidate function of the l-th layer, αl

i

and Θl
i are corresponding architecture parameter and function

weights, respectively. λl
i denotes architecture weight obtained

by applying a Softmax function to the architecture parameter
vector αl. The output of the l-th layer hl can be modeled as a
weighted sum of all the candidates in the l-th layer. Then the
architecture parameter and function weights can be trained in
an alternative manner until convergence. Finally, the optimal
architecture candidate at each layer is obtained according to λ.

3.1. Gumbel-softmax DARTS
In traditional DARTS methods, the differences among architec-
ture weights obtained by a flattened Softmax function are rel-
atively small. This is prone to yield confusion over different
candidates and thus leads to search errors. To minimize the con-
fusion among different architectures, a Gumbel-Softmax distri-
bution [41, 42] is adopted to sharpen the architecture weights
distribution to an approximately one-hot vector as,

λ
l
i =

exp(log(αl
i + Gl

i)/T )
∑Nl

j=1 exp(log(αl
j + Gl

j)/T )
, (3)

3333



Table 1: Performance of architecture compression of Conformer systems. “FW” and “FW-m” denote the hidden layer dimensionality
of the first and the second feed forward layers in each FFN module, respectively. Similarly, “BN” and “BN-m” are corresponding
bottleneck dimensionality for low-rank factorized FFNs. The hyper-parameter search scope for “FW” and “FW-m” hidden layer
dimensions (Sys. 10-12) is from 1024 to 4096 with a step size of 128, denoted as indices [0, 24]. The hyper-parameter scope for
“BN” and “BN-m” in Sys.13 is from 80 to 240 with a step size of 20 denoted as indices [0, 8], with “FW” and “FW-m” fixed as 2048.
{[i, j]} : {x} denotes hyper-parameters from i-th layer to j-th layer inclusive set as “x”. “;” is used as a delimiter between hidden and
factorized bottleneck layers’ dimensionality settings. “S” and “L” denote low-rank weight matrices with and without semi-orthogonal
constraints, respectively. † denote no significant (MAPSSWE [11], α=0.05) WER difference observed over the baseline system (sys.1).

Sys. Search Search
η Searched Architecture Hub5’00 #Param. (Million)

All / EncoderMethod Object swbd callhm Avg.
1 Baseline - - FW{[1 : 12]} & FW-m{[1 : 12]} : {4096} 7.2 15.0 11.1 69.81M / 56.90M
2

Manual

- -

FW{[1 : 12]} & FW-m{[1 : 12]} : {1024} 7.6 15.5 11.6 31.98M / 19.07M
3 FW{[1 : 12]} & FW-m{[1 : 12]} : {2048} 7.3 15.3 11.3 44.59M / 31.68M
4 FW{[1 : 12]} & FW-m{[1 : 12]} : {5120} 7.1 15.0 11.1 82.41M /69.50M
5 FW{[1 : 12]} & FW-m{[1 : 12]} : {8192} 7.3 14.9 11.1 120.24M / 107.33M
6

- -

BN & BN-m{[1 : 12]} : {160} FW & FW-m{[1 : 12]} : {5120} (LLLL) 7.7 16.3 12.1 60.79M / 47.88M
7 BN & BN-m{[1 : 12]} : {160} FW & FW-m{[1 : 12]} : {5120} (SLLL) 7.2 15.4 11.3 60.79M / 47.88M
8 BN & BN-m{[1 : 12]} : {160} FW & FW-m{[1 : 12]} : {5120} (SLLS) 7.2 15.1 11.2 60.79M / 47.88M
9 BN & BN-m{[1 : 12]} : {160} FW & FW-m{[1 : 12]} : {5120} (LSSL) 9.1 18.5 13.8 60.79M / 47.88M

10
PipeGumbel

FW

0 FW 10 14 14 19 2 23 10 15 8 13 17 1
7.2† 14.9† 11.1† 55.10M / 42.19MFW-m 12 17 13 10 21 24 20 21 17 18 16 17

11 0.05 FW 0 0 0 1 0 0 0 1 2 2 13 1 7.4† 15.1† 11.3† 34.54M / 21.63MFW-m 0 0 1 2 2 1 0 0 5 0 0 8

12 PipeSoftmax 0.01 FW 0 0 0 0 0 0 0 0 0 0 0 22
7.4† 15.7 11.6 34.81M / 21.90MFW-m 0 0 0 0 0 0 0 0 0 0 0 21

13 PipeGumbel BN 0.03 BN 5 6 5 7 2 0 2 2 4 1 3 1
7.3† 15.3† 11.3† 35.01M / 22.10MBN-m 0 1 1 5 1 0 3 4 6 7 6 1

14 PipeGumbel FW& BN 0.03 FW-BN 16;6 8;2 0;8 4;2 0;4 4;4 0;2 0;2 0;4 0;2 0;2 0;2
7.3† 15.3† 11.3† 32.30M / 19.39MFW-BN-m 4;6 12;8 8;6 0;2 0;6 0;4 0;2 4;8 0;4 0;4 0;2 0;6

where Gl
i = − log(− log(U l

i )) is the Gumbel variables and U l
i

is a uniform random variable. Eq. (3) approaches a categorical
distribution as the temperature T decreases to zero.

3.2. Pipelined and Penalized DARTS
To avoid Gumbel-Softmax DARTS systems prematurely se-
lecting sub-optimal architectures at an early stage, a pipeline
style DARTS [43] is used to decouple the architecture param-
eter training from the model weights training process. Specifi-
cally, in pipelined DARTS, a supernet containing model param-
eters of all the candidates are trained to convergence at the first
stage. The architecture parameters are then updated in the sec-
ond stage on separate held-out data to avoid overfitting, with the
other candidate internal parameters kept fixed.

During architecture compression, a penalty loss incorporat-
ing the complexity of each candidate choice is jointly optimized
with the original Conformer loss function:

L = Lconformer + η
∑

i,l
α

l
iC

l
i , (4)

where Cl
i is the complexity penalty term expressed as the num-

ber of parameters of the i-th candidate in the l-th layer. η is a
trade-off hyper-parameter to be tuned.

4. Neural Network Quantization
Neural network quantization can further compress a neural net-
work model by replacing the full precision weight parameters
stored in 32-bit floating-point numbers with low-precision inte-
gers. An n-bit symmetric linear quantization can be denoted as:

Θ̂ = ΠQ(β,n)(Θ), (5)

where Θ and Θ̂ are full-precision and quantized model weights,
respectively. Π(·) is a projection function that projects each el-
ement of Θ to its closest value in a quantization table Q(β, n),

Q(β, n) = β × {0,±1,±2, . . . ,±(2
n−1 − 1)}, (6)

where β is a scaling factor to control the dynamic range of
the weights and is stored separately as a full-precision floating-
point number for the whole Θ. The most common choice is to
set β = max(|Θ|), which is also adopted in this paper.

5. Mixed Precision Quantization
Different from uniform-precision quantization that fails to ac-
count for varying performance sensitivity of different layers (or

components), the main idea of mixed-precision quantization is
to keep more sensitive parts at higher precision while squeezing
the bit widths more from less sensitive parts without increas-
ing overall model size. The following Kullback–Leibler (KL)
divergence metric serves to measure the output distribution dif-
ference between the original and quantized models [16, 24],

Ωi(n) =
1

T

T∑

t=1

DKL(f(xt;Θ)||f(xt; Θ̂i(n))), (7)

where Ωi(n) denotes the sensitivity of the i-th layer to n-bit
quantization. Θ̂i(n) denotes model parameters in the i-th layer
is quantized to n-bit. f(·) = Softmax(ϕ(·)) is to normalize
the Encoder output into a distribution. xt is the input vector at
time step t, among a total of T frames. The mixed precision
settings for a L-layer Conformer system with a target model
size Starget can be obtained by solving the following:

argmin
{ni}Li=1

Ω =
L∑

i=1

Ωi(ni) s.t.
L∑

i=1

Ni ∗ ni ≤ Starget, (8)

where Ni and ni are the numbers of parameters and quantiza-
tion bit width of the i-th layer. The optimization problem can
be solved by a dynamic programming method to first obtain a
Pareto frontier and then select the configuration with the lowest
sensitivity that satisfies the model size constraint [16].

6. Experiments
The experiments are conducted on the 300-hr benchmark
Switchboard corpus [44] with a single NVIDIA A40 GPU. The
developed systems are evaluated on NIST Hub5’00, RT02, and
RT03 evaluation sets containing 80, 120, and 144 speakers, and
3.8, 6.4, and 6.2 hours of speech, respectively. The baseline
Conformer system is configured using the ESPnet [45] recipe2.
As the Encoder module accounts for 81.5% of the baseline
Conformer model parameters, architectural compression is per-
formed on the Encoder only. In the quantization stage, both the
Encoder and Decoder are low-bit quantized.

Experiments on neural architecture compression using
complexity-aware NAS are shown in Tab. 1, where several
trends can be found: 1) Before compressing, a series of man-
ually re-configured Conformer systems (Sys. 1-9) are explored

2ESPnet: egs/swbd/asr1/run.sh
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Table 2: Performance of the baseline full-precision, uniform-precision, and mixed-precision quantized Conformer systems with local
precision settings automatically learned using the KL metric of Section 5 on NIST Hub5’00, RT02, and RT03. † denotes no significant
(MAPSSWE [11], α=0.05) WER increase over the 32-bit baseline (ID 0). Speech processing real time factors (RTFs) in the last column.

Sys. ID Quant. Config. Bit Hub5’00 rt02 rt03 Model / Enc.
Size(MB)

Ratio
All / Enc.

RTFs
×10−2Prec. Method swbd callhm swbd1 swbd2 swbd3 fsh swbd

Sys.1 (Tab. 1) 0 Baseline
Quant. Start. Point

32 7.2 15.0 8.6 12.7 15.3 10.4 16.5 266.3 / 217.1 1/1 0.900
Sys.11 (Tab. 1) 1 32 7.4† 15.1† 9.0† 12.7† 15.4† 10.5† 16.6† 131.8 / 82.5 2.0/2.6 0.472

Quantized
Sys.11 (Tab. 1)
(Encoder Only)

2
Uniform Manual

Define

2 8.1 16.3 9.5 13.9 17.2 11.1 17.8 54.4 / 5.2 4.9/41.6 0.384
3 4 7.7 15.5 9.1 13.1† 16.0 10.7 17.2 59.6 / 10.3 4.5/21.1 0.398
4 8 7.4† 15.1† 8.7† 13.0† 15.7† 10.4† 16.8† 69.9 / 20.6 3.8/10.5 0.402
5

Mixed

2.6 7.9 16.1 9.2 13.3 16.5 11.0 17.1 55.9 / 6.7 4.8/32.4 0.421
6

KL
2.5 7.9 15.6 9.2 13.1† 15.9 10.8 17.4 55.7 / 6.5 4.8/33.4 0.412

7 3 7.9 15.7 9.1 13.3 16.1 10.8 17.4 56.9 / 7.6 4.7/28.5 0.471
8 4 7.4† 15.4† 9.0† 12.9† 15.6† 10.4† 16.8† 59.5 / 10.2 4.5/21.2 0.438

Quant. Sys.11 (Tab.1) 9 ID 3 with 4Bit Dec. 4 7.7 15.6 9.2 13.0† 16.0 10.5† 17.0 16.5 / 10.3 16.1/21.2 0.396
(Encoder+Decoder) 10 ID 8 with 4Bit Dec. 4 7.5† 15.2† 9.0† 12.9† 15.4† 10.5† 16.2† 16.4 / 10.2 16.2/21.2 0.418

Layer 0
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Figure 2: Layer level bit-widths of an average 4-bit mixed pre-
cision quantized system (Tab. 2, ID 8) learned using KL metric.

first to establish the best hand-crafted architectural hyper-
parameters to serve as the baseline starting point. The hidden
expansion dimensionality of the FFN feed forward layer is uni-
formly raised from 1024 to 8192, where the best performance
(WER) occurs at 4096 hidden dimensions (Sys. 1). No statis-
tically significant improvement is observed if it is increased to
5120 or 8192 (Sys. 4, 5). Based on these results, Sys. 1 (Tab. 1)
is selected as the uncompressed baseline system. 2) The ar-
chitecture compressed systems obtained using Gumble Softmax
based architecture weights consistently outperform systems ob-
tained using standard, non-Gumble Softmax (Sys. 10 and 11 vs.
Sys. 12). 3) The complexity penalty factor η has an effective
control on the model size of the NAS-searched systems (Sys.
10 of 55.10M parameters with η = 0 vs. Sys. 11 of 34.54M
with η = 0.05.). It allows an optimal system of the best trade-
off between model size and performance to be selected (Sys.
11), achieving an overall 2.0 times size reduction without sta-
tistically significant WER increase over the baseline (Sys. 1).

4) The effect of further using factorized low-rank weight
matrices is then examined on the manually configured system
with 5120 hidden nodes and the bottleneck dimensions fixed as
160 (Sys. 6-9). The resulting system performance suggests that
the best location to introduce the semi-orthogonal constraint is
at the left (projection) and right (affine) low-rank weight ma-
trices of the first and second FNN layers, respectively (Sys. 8
(SLLS), “S” for low-rank matrices with semi-orthogonal con-
straint, “L” for those without the constraint). 5) Considering
only locally compressing the low-rank subspace dimensional-
ity of the baseline (Sys. 1) at each factored FFN layer, using
pipelined Gumble-DARTS with η = 0.03 (Sys. 13), a com-
pressed model size similar to that of only optimizing the FNN
feed forward layer dimensionality (Sys. 11) was obtained. 6)
Furthermore, performing architecture compression on both the
hidden layer and factored FFN bottleneck dimensionality3 pro-
duces a “lossless” compression ratio of 2.2 times (2.9 times for
Encoder) over the manually crafted baseline (Sys. 1) while in-
curring no statistically significant WER increase (Sys. 14)

3Due to memory constraint in joint double hyper-parameter search,
a smaller search scope is used for each hyper-parameter: from
1024 to 4096 with a step size of 512 for “FW” and “FW-m”, and
{120,160,200,240} for “BN” and “BN-m”.

The most compact and best performing model (Sys. 11)
in Tab. 1 is selected to serve as a streamlined starting point in
the following low-bit quantization stage. During quantization,
quantization-aware training (QAT) with the straight-through es-
timator (STE) [28] is adopted to reduce the performance degra-
dation to quantization errors. Results reported in Tab. 2 (ID 2-
10) show several trends4. 1) There is clear precision redundancy
in un-quantized Conformer systems. For example, the uni-
formly configured 8-bit quantization of the Encoder incurs no
significant WER increase over that of the 32-bit full-precision
baseline (ID 4 vs. ID 0). 2) Systems with KL-configured
mixed precision consistently outperform uniformly and man-
ually configured ones of comparable averaged bit-widths: the
4-bit systems (ID 8 vs. ID 3) and the 2.5-bit systems (ID 6
vs. ID 5). The detailed local sub-layer bit-widths of 4-bit KL-
configured mixed-precision (system ID 8) are shown in Fig. 2.
3) Compared with the full precision, manually configured base-
line (Sys. 1, Tab. 1, also as ID 0 in Tab. 2), after also applying
4-bit quantization of the Decoder, an ultra compact system (ID
10) with an overall ”lossless” compression ratio of 16.2 times
(21.2 times for Encoder alone) was produced using both archi-
tecture compression and KL based mixed precision quantiza-
tion while incurring no statistically significant WER increase.
4) The model architecture compression ratio is generally found
to be linearly correlated with the changes of RTF (ID 0 vs. 1,
Table 2 last column). However, the mixed-precision quantiza-
tion methods are currently not fully supported by GPU CUDA
libraries (e.g., 4-bit precision is still practically represented as
8-bit). Hence, the model quantization ratios have not been fully
translated into the changes of RTF (ID 1 vs. 3, 4, Tab. 2).

7. Conclusion
This paper presents an aggressively compressed Conformer
ASR system on the 300-hr Switchboard data using a novel
combination of neural architectural compression and mixed-
precision quantization approaches. They are designed to ac-
count for the varying performance sensitivity of different model
components to structural compression and precision quantiza-
tion. An overall “lossless” model compression ratio of 16.2
times (21.2 times for Encoder alone) is finally obtained over the
full-precision manually configured baseline while incurring no
statistically significant WER increase. Future work will focus
on improving model compression and inference efficiency.
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