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Abstract

Transformer has recently gained more attention and is widely
used in audio tasks. Most tasks compute attention directly over
the entire time-frequency space or only in the temporal. This
paper presents a joint time and frequency model for Chinese
opera classification. A shallow convolutional block is used to
get localized low-level semantic features and reduce the feature
map size. Moreover, the criss-cross attention and the factorised
self-attention are employed in the model to extract the time and
frequency space representation. The experiment results demon-
strate that the proposed model achieves state-of-the-art perfor-
mance on a large Chinese opera dataset with fewer model pa-
rameters.
Index Terms: time attention, frequency attention, Chinese
opera classification, Transformer

1. Introduction
Chinese opera is a comprehensive stage art style with a long
history in China. Moreover, how to better inherit and develop
opera has always been an essential part of Chinese culture in ev-
ery era. Typically, opera classification is used as a fundamental
understanding of the field of opera. However, it has significant
research and application value for downstream tasks, such as es-
tablishing a database of opera materials [1], analyzing the char-
acteristics of the singing style and structure for Peking opera
[2, 3], etc. [4, 5]

However, there are some challenges in Chinese opera clas-
sification. The first is the difficulty of data annotation for differ-
ent opera genres because it can only be done by specific groups
of people, such as opera performers or loyal listeners. Then,
unlike music, the non-silence opera fragment is mainly com-
posed of three parts: pure music, song, and speech [1]. So, it
has a more complex content expression. Finally, during the long
period of forming and developing traditional Chinese opera, the
different operas influenced and cross-pollinated one another, re-
sulting in remarkable similarities between different operas.

With the introduction of Vision Transformer (ViT) [6], a
purely attention-based model which uses patch embedding to
replace convolutional neural networks (CNNs) is widely ap-
plied for many tasks [7, 8, 9]. One disadvantage of self-attention
in standard Transformer is the high computational complexity
of the model that requires computing a similarity measure for
all time-frequency bins. To increase computational efficiency
and model performance, this paper proposes to combine Trans-
former with CNNs for the Chinese opera classification task.

First, a convolutional block is proposed to extract the la-
tent representation of the Mel-spectrogram. Unlike patch em-
bedding in the AST model [7], which needs to subdivide Mel-

spectrogram evenly into patches, the convolutional block pro-
vided added flexibility.

Second, based on the attention mechanism, Transformer
learns a representation by relating different positions in se-
quences. However, most of it is used as a temporal feature ag-
gregator, which only computes the correlation between the tem-
poral locations after combining frequency dimension with chan-
nel features, or space feature aggregator by computing the atten-
tion of the patch over the entire time-frequency space. However,
it is well known that different audio components exist in differ-
ent frequency ranges, and there is a robust spectral correlation.
Therefore, this paper employs the criss-cross attention and the
factorised self-attention to compute attention in a Transformer:
consider both the horizontal and vertical dependencies of time-
frequency bins simultaneously or separately in attention.

In summary, the contributions of the paper are as follows:
(1) This paper introduces a novel joint time and frequency trans-
former for Chinese opera classification. (2) Experimentally,
the proposed model achieved state-of-the-art results for Chinese
opera classification.

2. Related work
To our knowledge, there is little research on Chinese opera clas-
sification tasks. In [10], seven machine-learning classifiers and
ten hand-crafted acoustic features were applied and compared to
test the classification results of eight typical genres of traditional
Chinese opera. In [11], it used multi-feature fusion and extreme
learning machines to discriminate eight typical genres. In [12],
designed for music auto-tagging, the Musicnn [13] model was
adopted to classify 18 Chinese opera genres containing horizon-
tal and vertical convolutional filters.

With the advancement of deep learning, architectures based
on CNN or Transformer have been continuously proposed and
applied to different tasks. Like [12], we investigate some meth-
ods for audio classification tasks. Based on different CNN vari-
ants, [14] conducts a consistent evaluation of different music
tagging models. In [15, 16], the sequence modeling approach
adopted a Transformer to summarize the temporal sequence of
the extracted local features by CNN. This method combines
the frequency dimension and channel features for input to the
Transformer encoder. [7] proposed audio spectrogram Trans-
formers (AST) for audio classification tasks, which are purely
based on self-attention. Due to the dependence on time frames
and frequency bins, [17] proposes SpecTNT, a time-frequency
transformer that models spectrograms as a sequence along both
time- and frequency-axes. Similar to the temporal Transformer
and spectral Transformer in [17], we also investigated different
axis-attention methods for image or video tasks [8, 9, 18, 19],
which there is no related method in audio applications. Those
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Figure 1: Overall architecture of the proposed model shown on the left for the Chinese opera classification. Two attention patterns over
time and frequency are shown on the right.

methods mainly calculate the attention on a single axis, such as
time, space for video or height, and width for image, and then
combine them in different ways.

3. Methodology
As illustrated in Figure 1, we first apply a convolutional block
for local feature aggregation. Then, the representation is fed
into various Transformer models to capture long-distance fea-
ture dependencies and obtain embeddings. Finally, the embed-
dings are used for classification with a linear layer. The detailed
architecture of the proposed network is discussed in the follow-
ing subsections.

3.1. Convolutional block

In AST model, the input of Transformer is a patch embedding
that is obtained through a linear projection layer after evenly
subdividing a time-frequency representation into patches. To
replace the above two operations and reduce feature map size,
this paper proposes to use a convolutional block to capture low-
level semantic features.

Instead of using a lightweight block with only one con-
volution layer or ResNet [20] model with complex deep con-
volution, we use shallow convolutional layers as our convolu-
tional block. Like [14], we use 3 × 3 convolution filters with
residual connections on Mel-spectrogram inputs. And instead
of using seven layers, we only use a four-layered convolutional
block. The representation after a convolutional block is denoted
as X ∈ RT×F×C , where F is the number of mel bins, T is the
number of time steps, and C is the number of attention channels
of Transformer.

3.2. Transformer models

This section introduces the time and frequency attentions com-
puted differently in Transformer. To start with, we introduce the
scaled dot-product attention first. Then the criss-cross attention
[18] and the factorised self-attention [9] will be explained.

3.2.1. Scaled dot-product attention

Scaled dot-product attention plays a pivotal role in the Multi-
Head Self-Attention layer (MHSA) of Transformer [21].
MHSA first generates a set of queries Q ∈ RN×d, keys
K ∈ RN×d, values V ∈ RN×d with the corresponding pro-
jection. Then the query vector q ∈ Rd is matched against each

key vector in K. The output is the weighted sum of a set of N
value vectors v based on the matching score. This process is
called scaled dot-product attention:

Attention(Q,K, V ) = Softmax

(
QKT

√
d

)
V (1)

To prevent minimal gradients and stabilize the training pro-
cess, each element in QKT multiplies by a constant 1/

√
d to

be rescaled into a standard range.

3.2.2. Criss-cross attention in both time and frequency direc-
tions

Based on speech signal processing, different frequency bins
have specific dependencies, and the time frames also have the
same property. Instead of the entire feature space, criss-cross
attention [18] considers feature points located in the time and
frequency directions when computing the MHSA. This method
can reduce the size of the N value representing computational
complexity, and experimental results show that it also leads to
improved classification accuracy.

As shown in the middle of Figure 1, given local feature
maps X ∈ RT×F×C , the module firstly applies three con-
volutional layers with 1 × 1 filters on X to generate three
feature maps Q, K and V , respectively, where {Q,K, V } ∈
RT×F×C′

. To get the attention of each feature point, com-
pute it respectively in the time and frequency directions. In
the Frequency direction, we can obtain the similarity matrix
DF ∈ RT×F×F by directly computing the QKT operation.
In the time direction, we can also obtain the similarity matrix
DT ∈ RF×T×T through the similar processing steps above.
After reshaping the matrix DT from RF×T×T to RT×F×T ,
we apply concatenation to the two similarities matrix to get
D ∈ RT×F×(T+F ). Then, a softmax layer is applied on D
over the last dimension to calculate map A ∈ RT×F×(T+F ).
Finally, to obtain attention, the following processing steps are
applied:

X ′ = reshape(ATVT ) +AFVF +X (2)

where AT ∈ RF×T×T and AF ∈ RT×F×F is part of
A. VT ∈ RF×T×C′

and VF ∈ RT×F×C′
are equal to V .

X ′ ∈ RT×F×C′
. reshape is used to transpose the time and

frequency dimension.

3920



3.2.3. Factorised self-attention in both time and frequency di-
rections

Different from criss-cross attention, factorised self-attention [9]
computes time and frequency sequentially, as shown in the right
of Figure 1.

After generating three feature maps {Q,K, V } ∈
RT×F×C′

, the frequency attention X ′
F ∈ RT×F×C′

can be
obtained using Equation 3 which introduces residual opera-
tions. Like Equation 3, the time attention is computed in Equa-
tion 4. The input is X ′′

F by reshaping X ′
F from RT×F×C′

to
RF×T×C′

. Moreover, three feature maps {QT ,KT , VT } ∈
RF×T×C′

can be obtained by applying three convolutional lay-
ers on X ′′

F . Finally, attention X ′ ∈ RF×T×C′
can be obtained.

X ′
F = Softmax

(
QKT

√
C′

)
V +X (3)

X ′ = Softmax

(
QTK

T
T√

C′

)
VT +X ′′

F (4)

4. Dataset
This section gives some introduction to our Chinese opera
dataset. According to the statistics, about 360 kinds of opera
genres in various regions of China contain a great deal of com-
plexity and variety [22]. We selected 21 genres as the clas-
sification objects based on the regional location and singing
style [10]. They are: Teochew Opera (潮剧), Kunqu Opera (昆
曲), Sichuan Opera (川剧), Hebei Clapper Opera (河北梆子),
Shanghai Opera (沪剧), Huagu Opera (花鼓戏), Huai Opera
(淮剧), Jin Opera (晋剧), Peking Opera (京剧), Pingju Opera
(评剧), Qin Opera (秦腔), Cantonese Opera (粤剧), Henan
Opera (豫剧), Huangmei Opera (黄梅戏), Yue Opera (越剧),
Erren Zhuan (二人转), Xi Opera (锡剧), Yang Opera (扬剧),
Lu Opera (吕剧), Suzhou Pingtan (苏州评弹), Jingyun Dagu
(京韵大鼓).

The above 21 genres selected 31750 tracks for experimen-
tation from tens of thousands of traditional opera pieces. Before
the experiment, to ensure audio quality and content reliability,
the audio with much noise or without song music [1] was re-
moved. Furthermore, the method of human rating [23] is used
to ensure the correctness of the target label. Table 1 gives the
statistical data information of each opera class. The total dura-
tion includes 7466.85 hours, with an average of 14.11 minutes
per track.

5. Experiments and results
5.1. Dataset and training detail

Our experimental data were collected in two time periods. The
first collected data is used to divide the training and validation
sets, while the second collected data is used entirely for the test
set. To ensure that the length of the track is not too long, the
tracks in the first two datasets are evenly divided into 10 minutes
of audio clips. Moreover, the audio clip or track with fewer
than 20 seconds is discarded for three datasets. As a result,
the training, validation, and test sets contain 21037, 5588, and
6301 audio clips, respectively. Because many audio clips have
different channels and sampling rates, we convert all audio clips
to monophonic and resample them to 16 kHz.

Table 1: Statistical information of the opera class

Index Opera Type Num Duration/h

1 Teochew Opera 731 397.56
2 Kunqu Opera 503 148.68
3 Sichuan Opera 1190 346.27
4 Hebei Clapper Opera 1057 489.33
5 Shanghai Opera 1583 274.02
6 Huagu Opera 540 213.0
7 Huai Opera 1305 239.47
8 Jin Opera 1123 180.6
9 Peking Opera 1350 202.22

10 Pingju Opera 1062 412.75
11 Qin Opera 1578 275.79
12 Cantonese Opera 1587 210.27
13 Henan Opera 1159 289.53
14 Huangmei Opera 2457 840.43
15 Yue Opera 1248 471.02
16 Erren Zhuan 2797 556.38
17 Xi Opera 881 193.81
18 Yang Opera 1103 181.99
19 Lu Opera 2948 551.25
20 Suzhou Pingtan 5288 951.61
21 Jingyun Dagu 260 40.87

Total 21 Types 31750 7466.85

In this work, the Transformer we used has an embedding
dimension of 256, one layer, and eight heads, where positional
embedding is unnecessary, and the CLS token is optional. The
Mel-spectrogram of a randomly sampled 15 s audio clip is com-
puted with 128 mel filter banks, 512 samples of Hann window,
and a hop size of 256 samples which is utilized as input to
the proposed network. Furthermore, we minimize binary cross-
entropy loss and update trainable parameters using a mixture of
scheduled ADAM [24] and stochastic gradient descent (SGD)
during training. In the inference stage, average track predic-
tions are performed to get the final prediction.

Because opera has similar musical expression to music, we
investigate several methods in [14] for our task. They are FCN
[25], Musicnn, Sample-level [26], Sample-level with squeeze-
and- excitation (SE) [27], CRNN [28], CNNSA [15], Har-
monic CNN [29], Short-chunk CNN [14], Short-chunk CNN
with residual connections (RES) [14] and AST. Among them,
CNNSA is selected as our baseline model. In the rest of the
paper, we will denote the proposed joint time and frequency
transformer with criss-cross attention as JTFT-CCA and with
factorised self-attention as JTFT-FSA.

Except for Accuracy, F1, Precision, and Recall, Area Un-
der Precision Recall Curve (PR-AUC) and Area Under Receiver
Operating Characteristic curve (ROC-AUC) are also used as
Evaluation Metrics.

5.2. Results

To compare the performance of different models, we report
evaluation metrics of all implemented models using the test
dataset in Table 2. The results in the table above demonstrate
that our proposed JTFT-CCA achieves the best classification re-
sults in all metrics, and the model with the waveform as the
input gets slightly worse results. From both columns of pa-
rameters and evaluation metrics, we find that our model has a
smaller number of parameters in achieving optimal classifica-
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Table 2: Results of different models on the test dataset

Models #param Acc F1 P R ROC-AUC PR-AUC

FCN[25] 0.45m 87.58% 83.72% 85.64% 85.09% 0.9909 0.9189
Musicnn[13] 0.78m 75.24% 69.98% 75.48% 72.56% 0.9741 0.8077
Sample-level[26] 1.86m 76.96% 73.74% 77.81% 75.80% 0.9766 0.8278
Sample-level + SE[27] 6.94m 82.25% 80.26% 83.33% 81.48% 0.9838 0.8890
CRNN[28] 0.39m 88.14% 85.65% 86.63% 86.76% 0.9920 0.9296
Harmonic CNN[29] 3.62m 88.55% 86.14% 87.44% 86.94% 0.9908 0.9370
Short-chunk CNN[14] 3.67m 84.84% 80.58% 82.35% 82.04% 0.9884 0.9045
Short-chunk CNN + RES[14] 12.09m 84.11% 79.36% 81.11% 81.03% 0.9852 0.8865
AST[7] 87.74m 76.31% 73.38% 79.35% 74.31% 0.9714 0.8471
CNNSA[15] 10.51m 91.21% 88.75% 88.76% 89.83% 0.9946 0.9520

JTFT-FSA (ours) 2.90m 90.16% 86.99% 87.31% 88.23% 0.9927 0.9420
JTFT-CCA (ours) 2.57m 92.51% 90.57% 90.91% 91.45% 0.9958 0.9695

Table 3: Ablation Results

Models #param Acc F1 P R ROC-AUC PR-AUC

JTFT-CCA 2.57m 92.51% 90.57% 90.91% 91.45% 0.9958 0.9695

Time-only 2.39m 89.78% 86.77% 87.37% 87.82% 0.9936 0.9423
Frequency-only 2.39m 88.95% 85.59% 86.11% 86.91% 0.9925 0.9343

tion results. Comparing the results of JTFT-CCA and CNNSA,
it can be concluded that that frequency information improves
the classification results. Furthermore, AST that performed well
on music classification instead achieved poorer results on opera
classification, indicating that opera has higher complexity than
music.

To observe the model’s classification performance on genre,
Figure 2 gives the confusion matrix for all classes. Each row
shows whether the tracks from a genre are misclassified to other
genres, and each column indicates the misclassification of other
genres on that genre. Those on the diagonal are correctly clas-
sified.

From the diagonal values in Figure 2, most genres can be
correctly classified. Looking at each row of data, the model
easily misclassifies Huagu Opera, Henan Opera and Yang Opera
into other genres. Furthermore, observing the column data, we
find that the model tends to misclassify the other genres into
Huagu Opera, Jin Opera, Huangmei Opera, Erren Zhuan, Yang
Opera, and Lu opera. Among them, Huagu Opera and Yang
Opera have poor data performance on both rows and columns.

5.3. Ablation study

To verify the rationality of the proposed model, we extend
our previous comparisons by doing an ablation study on our
method. We evaluate whether using time and frequency atten-
tion on transformer blocks improves the performance. We do so
by alternately removing time or frequency attention in Trans-
former. Specifically, Time-only calculates only time attention
while combining frequency dimension with batch size. Instead,
Frequency-only applies a similar approach as above to the fre-
quency dimension. Finally, the result is suggested in Table 3.
From the results, both Frequency-only and Time-only are worse
than JTFT-CCA. It illustrates that time and frequency informa-
tion is helpful for classification under this task.

Figure 2: Confusion matrix of the proposed JTFT-CCA model
under the test dataset.

6. Conclusion and future work
In this paper, a neural network that combines both convolution
and Transformer is proposed for Chinese opera classification.
Notably, a different way to compute the time and frequency at-
tention in a Transformer is used and compared in this paper.
The experiments demonstrate that the proposed model achieves
optimal performance with fewer model parameters. In future
work, this network will be used to distinguish different singing
styles in the same genre.
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