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Abstract
Domain shift is a challenging problem in speaker verifica-

tion, especially when dealing with unseen target domains. Re-
cently, embedding decoupling-based methods have shown their
effectiveness. Typically, domain information is extracted by a
domain classification loss and then decoupled from speaker em-
beddings. However, the domain classification loss fails to en-
sure that only domain information is encoded in domain embed-
dings. This paper proposes a novel mutual information-based
embedding decoupling framework, in which the domain infor-
mation is extracted by maximizing the mutual information be-
tween different speaker sample pairs in the same domain. Then
the domain information is removed from speaker embeddings
by minimizing mutual information between speaker and domain
embeddings. Experiments indicate that our method can improve
the generalization and outperform domain classification-based
decoupling methods.
Index Terms: speaker verification, domain generalization, em-
bedding decoupling, mutual information

1. Introduction
Automatic Speaker Verification (ASV) is the task that de-
termines whether a test utterance belongs to the enrollment
speaker [1]. Currently, speaker embedding models [2, 3] have
become state-of-the-art ASV models. However, speaker em-
bedding models will suffer significant performance degradation
when training and test utterances are not independent and iden-
tically distributed (i.i.d). Such a problem with different distri-
butions is known as domain shift [4], where the training and
test distributions are called the source and target domains, re-
spectively. A straightforward way to alleviate domain shift is
to collect some target data to transfer a source-domain-trained
speaker embedding model to the target domain, i.e., the domain
adaptation method [5]. However, in some scenarios, the target
domain data is difficult to collect or even unknown before de-
ployment, which limits the applicability of domain adaptation.

In the absence of target domain data, domain generalization
methods [6] have emerged to learn domain-invariant speaker
embeddings from multiple source domains (e.g., vlog, inter-
view, and other genre utterances) that generalize well in un-
seen target domains. For ASV models, existing domain gener-
alization methods consist of domain alignment, model-agnostic
meta-learning, and embedding decoupling. Domain alignment
[7] is an effective method for learning domain-invariant speaker
embeddings, which minimizes certain distances (e.g., cosine
distance [8], MMD [9], and JS divergence in domain adver-
sarial training [10]) among multiple source speaker embedding
distributions to remove domain information. In order to dis-
tinguish speaker information from irrelevant domain informa-

tion, domain alignment relies on data from different domains
for the same speaker, i.e., same-speaker multi-domain utter-
ances. Unfortunately, it is challenging to collect large-scale
same-speaker multi-domain corpus in practice. Model-agnostic
meta-learning (MAML) [11] learns domain-invariant speaker
embedding by simulating training and testing domain shift dur-
ing training [12]. While this method achieves well generaliza-
tion, it requires the calculation of second-order gradients, which
leads to considerable complexity. Embedding decoupling-based
methods [13, 14, 15, 16, 17] typically extract domain-related in-
formation by learning domain embeddings, and then strip this
information from speaker embeddings to learn domain-invariant
speaker embeddings. The embedding decoupling methods have
great interpretability and show an excellent capacity for solving
domain shift problems in ASV [5, 18]. Thus we focus on the
embedding decoupling methods in this paper.

Existing embedding decoupling methods typically learn do-
main embeddings via a domain classification loss [13, 17, 19].
This causes two issues. Firstly, training with the domain classi-
fication loss requires multi-domain utterances for each speaker.
Otherwise, if each domain consists of different speakers, the do-
main classification loss may take advantage of the differences
in speaker distributions to distinguish among domains. Thus,
the speaker-related information will be encoded in domain em-
beddings and then stripped from speaker embeddings, which
weakens the discriminability of the speaker embeddings. Sec-
ondly, the domain classification loss can only learn domain em-
beddings that contain information that distinguishes among do-
mains, rather than all domain-related information. Thus, this
paper aims to propose a new embedding decoupling method that
solves both issues.

In this paper, we propose a mutual information-based em-
bedding decoupling method to decompose the original embed-
dings into the speaker-invariant domain embeddings and the
domain-invariant speaker embeddings. Specifically, since the
only shared information for data from different speakers in
the same domain is domain-related information, we propose
a cross-speaker mutual information maximization method to
learn the speaker-invariant domain embeddings, which maxi-
mizes the mutual information between the sample pairs from
different speakers in the same domain. Furthermore, we mini-
mize the mutual information between speaker and domain em-
beddings to reduce their dependencies and obtain the domain-
invariant speaker embeddings. Our method does not require
multi-domain utterances for each speaker to learn domain-
invariant speaker embeddings. Thus it is more conducive to
alleviating domain shift in practice. Experiments on the CN-
Celeb [20] corpus indicate that the proposed method can effec-
tively improve the generalization in unseen target domains and
outperform domain classification-based decoupling methods.
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Figure 1: Overview of the proposed method. xa and xb are a pair of embeddings from different speakers in the same domain, and their
shared information is domain-related information. (1) AM-softmax is used to learn speaker-related information. (2) Mutual information
(MI) maximization is used to learn speaker-invariant domain embeddings zda and zdb . (3) MI minimization is used to remove irrelevant
domain information from speaker embeddings and learn domain-invariant speaker embeddings zsa.

2. Methodology
Given a training set consisting of M source domains D =
{D1,D2, . . . ,DM}, whereDj denotes the j-th source domain.
In most cases, each source domain typically contains different
speakers. As shown in Figure 1, each utterance is transformed
into a raw speaker embedding x via a pre-trained and frozen
encoder E (·) called the x-vector [2] model. To decouple the
domain and speaker information in x, the domain encoder gφ(·)
with parameter φ is trained to extract all domain-related infor-
mation from x. Further, the domain information is removed
from the mapped speaker embeddings extracted by the speaker
encoder fθ(·) with parameter θ, yielding the domain-invariant
speaker embeddings.

2.1. Speaker Embedding Learning

The mapped speaker embeddings should maintain the raw
speaker-related information. To this end, AM-softmax [21] loss
is adopted to learn the mapped speaker embeddings:

Lspk
θ = − 1

N

N∑

i=1

log
es·(cos δyi,i−m)

es·(cos δyi,i−m) +
∑C
c=1,c6=yi e

s·cos δc,i
,

(1)
where yi ∈ {1, 2, . . . , C} is the ground-truth speaker label of
xai ,C denotes the number of speakers from all source domains,
δc,i is the angle between the weight vector wc and the speaker
embedding zsai = fθ (xai), s and m denote the scaling factor
and the margin, respectively.

2.2. Mutual Information Maximization

Suppose xa and xb are samples from different speakers in the
same domain, and their domain embeddings are zda = gφ (xa)
and zdb = gφ (xb). Intuitively, the shared information between
xa (xb) and zdb (zda) can be any speaker-independent domain in-
formation, such as genre, background noise, and language cat-
egory. Thus, we train the domain encoder to extract all shared

domain information except speaker information. Since mutual
information (MI) [22] can measure and quantify the informa-
tion shared between two random variables and larger MI indi-
cates more shared information, we maximize the MI between
xa (xb) and zdb (zda) to learn the domain embeddings:
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In practice, it is challenging to directly compute MI as the
joint and marginal distributions are unknown and intractable.
Thus we focus on the MI estimator Deep InfoMax [23], which
can obtain a lower bound of MI. Take I

(
xa, z

d
b

)
as an example,

suppose we have N sample pairs {(xai ,xbi)}Ni=1 drawn from
p (xa,xb), the lower bound of I

(
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)
is defined as:
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(4)

where Tη : X ×Z → R denotes a neural network with param-
eters η called the statistics network, the pairs {(x̃ai , zdbi)}Ni=1

are sampled from the marginal distributions p (xa) and p(zdb).
We obtain such data pairs by simply shuffling {(xai , zdbi)}Ni=1

along the xai axis, where {(xai , zdbi)}Ni=1 are sampled from the
joint distribution p(xa, zdb). The lower bound Î

(
xb, z

d
a

)
can be

calculated in the same way.
The objective function of learning domain embeddings is to

maximize the lower bound of MI, which is equivalent to mini-
mizing the following loss:

Ldom
φ,η = −Î

(
xa, z

d
b

)
− Î

(
xb, z

d
a

)
. (5)
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Table 1: Statistics of the CN-Celeb dataset after custom division. Note that utterances of less than 2s within the same genre and
speaker are concatenated to form long utterances rather than discarded.

Genre Vlog Recitation Speech Live Broadcast Interview Entertainment

# of training speakers 462 224 299 466 1,108 928
# of training utterances 123,504 59,020 41,311 167,070 68,627 38,749

# of evaluation utterances 1,592 1,280 2,184 2,559 7,733 4,049
# of trials 12,736 10,240 17,472 20,472 61,864 32,392

2.3. Mutual Information Minimization

To remove domain information from the mapped speaker em-
beddings, we minimize the MI between the domain and mapped
speaker embeddings to learn domain-invariant speaker embed-
dings. Specifically, given an input xa, the objective is defined
as:

min
θ,φ
I
(
zsa, z

d
a

)
, (6)

where zsa = fθ (xa), zda = gφ (xa). The minimization of
MI involves the calculation of its upper bound. We adopt
Contrastive Log-ratio Upper Bound (CLUB) [24] to estimate
the MI upper bound. Specifically, given N embedding pairs
{(zsai , zdai)}Ni=1, the CLUB is defined as:

Ĩ
(
zsa, z

d
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(7)

where qγ(zda|zsa) is a variational distribution (e.g., Gaussian dis-
tribution) with parameters γ, which can be learned by maximiz-
ing the log-likelihood loss Llld

γ = 1
N

∑N
i=1 log qγ

(
zdai |zsai

)
.

Subsequently, the loss function for learning decoupled embed-
dings is defined as:

Ldec
θ,φ = Ĩ

(
zsa, z

d
a

)
. (8)

2.4. Overall Optimization

The overall objective function is the weighted sum of all pro-
posed loss functions:

Ltotal = λdomLdom
φ,η + λspkLspk

θ + λdec
t Ldec

θ,φ, (9)

where λdom and λspk are fixed trade-off parameters, λdec
t is a dy-

namic parameter w.r.t. the t-training iteration. Since fθ (·) and
gφ (·) are under-fitted in the early training iterations, λdec

t is set
to a small initial value to avoid CLUB disrupting the training of
fθ (·) and gφ (·), and is continuously increased during training.
We implement λdec

t as a exponentially function:

λdec
t = λdec

T (
2

1 + e−10t/T
− 1), (10)

where λdec
T is the parameter at the final iteration T .

In practice, Ldec
θ,φ relies on the accurate approximation of

qγ(z
d
a|zsa) to the conditional distribution p(zda|zsa). To this

end, Llld
γ and Ltotal are updated alternately during the training.

Specifically, at each training iteration, we first update qγ(zda|zsa)
by maximizing Llld

γ , then freeze γ and compute Ltotal. Finally,
the gradient is back-propagated to fθ (·) and gφ (·).

3. Experiments
3.1. Datasets

VoxCeleb2 [25] is adopted to train the x-vector model, which
contains 1,092,009 utterances from 5,994 speakers. Online data
augmentation [26] is performed with MUSAN [27] and RIRs
[28]. The RIRs are limited to small and medium rooms.

CN-Celeb is adopted to train the speaker and domain en-
coders and evaluate the proposed method. This database con-
tains two datasets: CN-Celeb1 [29] and CN-Celeb2 [20]. The
former contains 126,532 utterances from 997 speakers, and the
latter contains 524,787 utterances from 1,996 speakers. Both
datasets contain 11 genres of utterances, which can be consid-
ered as 11 domains. We choose 6 domains containing large
amounts of training data to conduct our experiments: Vlog,
Recitation, Speech, Live Broadcast, Interview, and Entertain-
ment. It should be noted that a large proportion of speakers in
CN-Celeb contain utterances in only one genre, making it more
challenging to address the domain shift problem.

To evaluate the performance of domain generalization, we
sequentially select one genre as the unseen target domain and
the remaining five as the seen source domains (M = 5), form-
ing six sets of experiments. We train the speaker and domain
encoders on the 5-source training set, and evaluate on the target
evaluation set. The officially released evaluation set consists
of utterances from each genre, but contains very few Vlog and
Recitation utterances. To make the evaluation more convinc-
ing, we divide some training speakers with Vlog and Recitation
utterances into the evaluation set and create the new trials file
for each genre. The trials files are created following the set-
ting of the VoxCeleb evaluation set to form balanced target and
non-target pairs. Specifically, non-target pairs are constructed
within the same genre, while target pairs are in the cross-genre
scenario to evaluate the performance in two cases: the domain
shift between enrollment and test utterances and the domain
shift between the training and evaluation sets. The statistics of
CN-Celeb after the custom division are shown in Table 1.

3.2. Implementation Details

ResNet-34 [30] is adopted as the x-vector model to extract
the raw speaker embeddings. The inputs acoustic features are
80-dimensional FBanks. Cepstral mean normalization (CMN)
is applied, and each training utterance is cut into 200-frame
chunks to create the same length inputs. For the network archi-
tecture, multi-head attention pooling [31] is adopted to convert
the frame-level embeddings to the segment-level embeddings.
For training, the network is optimized by the AM-softmax loss
with a scaling factor of 35 and a margin of 0.2. Stochastic gra-
dient descent (SGD) is adopted as the network optimizer, where
the initial learning rate is 0.02, and the weight decay is 5e-
4. The ReduceLROnPlateau scheduler is applied to update the
learning rate. Once trained, the 256-dimensional embeddings
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Table 2: Results in various unseen target domains. Live. and Enter. denote live broadcast and entertainment, respectively. ResNet-34
refers to the results of raw speaker embeddings. + spk encoder refers to training the speaker encoder with only the AM-softmax loss
Lspk
θ . MAML is the state-of-the-art domain generalization method in speaker verification. EER refers to Equal Error Rate in %, and

mDCF refers to Minimum Detection Cost with Ptarget = 0.01. * denotes the results of re-implementation. Best in bold.

Model Vlog Recitation Speech Live. Interview Enter. Average

EER mDCF EER mDCF EER mDCF EER mDCF EER mDCF EER mDCF EER mDCF

ResNet-34 14.07 0.632 11.78 0.681 7.66 0.501 12.02 0.687 11.98 0.682 12.51 0.601 11.67 0.631
+ spk encoder 13.95 0.697 10.31 0.519 6.91 0.403 10.51 0.590 12.02 0.601 11.60 0.682 10.88 0.582
Our proposed 13.19 0.647 9.78 0.497 6.18 0.377 9.82 0.549 11.13 0.579 11.29 0.625 10.23 0.546

*MAML [12] 13.31 0.663 10.05 0.511 6.29 0.381 10.13 0.571 11.45 0.588 11.41 0.661 10.44 0.563

Table 3: Average results of decoupled speaker embeddings
(Speaker) and domain embeddings (Domain) in 6 unseen tar-
get domains, where the domain embeddings are learned via the
domain classification loss or MI maximization.

Domain Loss Speaker Domain

EER mDCF EER mDCF

Classification 10.69 0.571 41.12 0.991
MI Maximization 10.23 0.546 47.19 0.997

are extracted as inputs to the speaker and domain encoders.
For embedding decoupling, the speaker encoder is imple-

mented by 2 fully-connected (FC) layers with 256, 128 neu-
rons. The domain encoder and the statistic network in Deep In-
foMax are implemented by 3 fully-connected (FC) layers with
512, 512, 128, and 512, 512, 1 neurons, respectively. 128-
dimensional domain and mapped speaker embeddings are ex-
tracted by the last layer of the encoders. The variational dis-
tribution qγ(zda|zsa) in CLUB is parameterized by a Gaussian
distribution. To obtain a more accurate approximation to the
conditional distribution p(zda|zsa), the mean and variance vec-
tors of the gaussian distribution are obtained by a larger 4-layer
FC network, and each hidden layer consists of 512 neurons. All
networks are optimized by the Adam optimizer [32] with the
learning rate of 1e-4 and the weight decay of 5e-4. The batch
size of input pairs is 128. The scaling factor and margin of
AM-softmax loss are 30 and 0.2, respectively. The trade-off
parameters λdom and λspk are 20 and 1, respectively. The final
iteration T is 16,000 and λdec

T is 0.002.

3.3. Results

Table 2 shows the performance of the various models in the
6 unseen target domains and their average results. Training
the speaker encoder with only the AM-softmax loss boosts the
performance due to the incorporation of the CN-Celeb training
set. Our proposed embedding decoupling method prevents the
speaker encoder from learning all domain-related information,
thus achieving the best performance. Compared with ResNet-
34 and + spk encoder, the relative reductions of the average re-
sults in EER are 12.3% and 6.0%, and the relative reductions in
minimum DCF are 13.5% and 6.2%, respectively. Our method
also outperforms MAML [12], which is the state-of-the-art do-
main generalization method in ASV, and our method does not
require calculating complex second-order gradients.

In order to demonstrate the superiority of MI maximiza-
tion over the domain classification in extracting domain embed-

interview
recitation
live_broadcast
entertainment
speech

(a) Speaker Embeddings (b) Domain Embeddings

Figure 2: t-SNE plots of decoupled (a) speaker embeddings
and (b) domain embeddings. Embedding points are colored by
speaker labels in (a) while colored by domain labels in (b).

dings, we replace the MI maximization loss in Eq. (9) with
a domain classification loss and show the average results of the
speaker and domain embeddings in Table 3. For the domain em-
beddings, the average result of MI maximization is worse than
that of the domain classification loss, which indicates that the
domain embeddings obtained by MI maximization contain less
speaker information. For the speaker embeddings, the average
result of MI maximization outperforms that of the domain clas-
sification loss, which indicates that learning all domain-related
information by MI maximization is more conducive to embed-
ding decoupling.

To intuitively illustrate the effectiveness of embedding de-
coupling, we show the t-SNE plots of speaker embeddings from
8 random speakers with multi-domain data and domain embed-
dings from 5 source domains (when the target domain is Vlog).
As can be seen, the speaker embeddings of each speaker cluster
in Figure 2(a) are indistinguishable based on the domain labels,
and the domain embeddings of each domain cluster in Figure
2(b) are indistinguishable based on the speaker labels, indicat-
ing that our method can obtain domain-invariant speaker em-
beddings and speaker-invariant domain embeddings.

4. Conclusions
In this paper, we proposed a mutual information-based embed-
ding decoupling method to improve domain generalization ca-
pabilities. Compared with the domain classification, our mu-
tual information maximization method was able to avoid the
presence of speaker information in domain embeddings. Then
domain-invariant speaker embeddings were obtained by mini-
mizing mutual information. In addition, our method did not re-
quire collecting multi-domain utterances for each speaker. Ex-
periments indicated that our method learned a generalizable
speaker embedding model and outperformed the previous do-
main classification-based decoupling methods.

3150



5. References
[1] J. H. Hansen and T. Hasan, “Speaker recognition by machines and

humans: A tutorial review,” IEEE Signal processing magazine,
vol. 32, no. 6, pp. 74–99, 2015.

[2] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudan-
pur, “X-vectors: Robust dnn embeddings for speaker recognition,”
in Proc. ICASSP, 2018, pp. 5329–5333.

[3] X. Qin, N. Li, C. Weng, D. Su, and M. Li, “Simple attention mod-
ule based speaker verification with iterative noisy label detection,”
in Proc. ICASSP, 2022, pp. 6722–6726.

[4] J. Li, J. Han, and H. Song, “Cdma: Cross-domain distance metric
adaptation for speaker verification,” in Proc. ICASSP, 2022, pp.
7197–7201.

[5] Z. Bai and X.-L. Zhang, “Speaker recognition based on deep
learning: An overview,” Neural Networks, vol. 140, pp. 65–99,
2021.

[6] J. Wang, C. Lan, C. Liu, Y. Ouyang, T. Qin, W. Lu, Y. Chen,
W. Zeng, and P. Yu, “Generalizing to unseen domains: A survey
on domain generalization,” IEEE Transactions on Knowledge and
Data Engineering, pp. 1–1, 2022.

[7] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy, “Domain gener-
alization: A survey,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, pp. 1–20, 2022.

[8] D. Cai, W. Cai, and M. Li, “Within-sample variability-invariant
loss for robust speaker recognition under noisy environments,” in
Proc. ICASSP, 2020, pp. 6469–6473.

[9] Z. Wang, W. Xia, and J. H. Hansen, “Cross-Domain Adapta-
tion with Discrepancy Minimization for Text-Independent Foren-
sic Speaker Verification,” in Proc. Interspeech, 2020, pp. 2257–
2261.

[10] J. Zhou, T. Jiang, L. Li, Q. Hong, Z. Wang, and B. Xia, “Training
multi-task adversarial network for extracting noise-robust speaker
embedding,” in Proc. ICASSP, 2019, pp. 6196–6200.

[11] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in Proceedings of the 34th
International Conference on Machine Learning, vol. 70, 2017, pp.
1126–1135.

[12] J. Kang, R. Liu, L. Li, Y. Cai, D. Wang, and T. F. Zheng, “Domain-
Invariant Speaker Vector Projection by Model-Agnostic Meta-
Learning,” in Proc. Interspeech, 2020, pp. 3825–3829.

[13] X. Qin, N. Li, W. Chao, D. Su, and M. Li, “Cross-Age Speaker
Verification: Learning Age-Invariant Speaker Embeddings,” in
Proc. Interspeech, 2022, pp. 1436–1440.
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