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Abstract
This paper introduces an image-driven audio-visual universal
source separation (ID-USS) and proposes ID-USS-Conformer.
ID-USS aims to separate a target source from the mixture based
on the input image that is consistent with the target. Impor-
tantly, ID-USS only focuses on the sound made by the target in
this image, not on the description of the target or the seman-
tic information of the picture. In detail, ID-USS-Conformer
mainly consists of an Efficient-b3-based visual branch and a
Conformer-based audio branch. The visual branch extracts the
visual clue of the target from the input image. After the au-
dio branch fuses the visual features, ID-USS-Conformer sepa-
rates the target source from the mixture. We launch an ID-USS
dataset and verify the effectiveness of ID-USS-Conformer on
it. The ID-USS-Conformer has achieved a 10.139 dB signal-
to-distortion ratio improvement in the test set and outperformed
the compared methods.
Index Terms: audio-visual source separation, universal source
separation, image-driven target source separation

1. Introduction
Short videos have gradually become one of the ways for people
to entertain and get in touch with the news. Audio understand-
ing technology now in short videos mainly revolves around hu-
man voice, such as subtitle speech recognition, speaker recogni-
tion, etc. With the urgent need for understanding various audio
events, it is necessary to separate and identify the acoustic event
in short videos, such as the sounds of animals, vehicles, and nat-
ural events. We expect to edit the sounds of short videos, such
as adding/deleting sound effects, build a large-scale sound li-
brary, and help the audio classification model to obtain better
classification performance through separation technology.

This paper introduces image-driven audio-visual universal
source separation (ID-USS) and proposes an ID-USS model to
separate target audio. In detail, the object appearing in the im-
age is identified as a detached target. The model uses images as
cues to drive the model to separate the possible sounds of the
target. ID-USS aims to separate universal acoustic events.

The single-channel multi-speaker speech separation has
achieved remarkable results. Permutation invariant training
(PIT) [1], CBLDNN-GAT [2], Conv-TasNet [3], and DPRNN
[4] have successively achieved state-of-the-art performance.
Multi-speaker separation mainly focuses on the separation be-
tween human voices rather than the separation of large-scale
acoustic events in life. On this basis, Multi-task audio source
separation (MTASS) [5–7] aims to separate speech, music, and
noise/sound effects into three tracks at once. Universal sound
separation [8–10] separates mixtures of arbitrary sounds of dif-
ferent types.

The popular separation methods can not meet our needs: (1)
multi-speaker speech separation only focuses on human speech.
(2) MTASS only separates speech, music, and noise. MTASS
ignores the separation of acoustic events. Various sounds, such
as closing doors, animal calls, and some annoying noises, are all
classified as noise track signals. (3) USS achieves the separa-
tion of various acoustic events. However, it meets several chal-
lenges as PIT-based methods: an unknown number of sources in
the mixture, permutation problem, and selection from multiple
outputs. Since the USS model needs to fix the number of out-
puts in advance, USS often performs poorly when the number
of acoustic events in the mixture exceeds the number of model
outputs. Besides, when the number of outputs is large, this will
increase the complexity of the PIT loss and training time.

Target-driven USS methods [11–13] adopt target clues to
drive the audio model to perform the sound separation. This
method effectively solves the problems encountered by the PIT-
based USS methods. Paper [11] first uses the predictions of a
sound classifier as embedding and then conditions on embed-
ding to perform sound separation iteratively. The performance
depends on the accuracy of the sound classifier. Sound selec-
tor [12] extracts the desired acoustic sound from the mixture,
while a one-hot vector representing the class of interest is in-
jected into the model. Sound selector [12] encodes 41 event
sound sources, which makes it hard to support sound separation
outside of classes. Class extending requires model retraining.
Soundfilter [13] uses the same type of audio signal as a clue to
drive USS. Due to the distribution change of audio, the selection
of the reference has a significant influence on the performance.
In practical applications, due to the complexity of audio visual-
ization, it is hard to quickly find a matched reference audio.

Recently, text or image-driven separation models have been
gradually proposed. Text or image-based methods show ad-
vantages over audio-based methods: (1) text and image can be
easily recognized and acquired by humans; (2) text and image
have low redundancy and strong expressive ability over audio.
LASS [14] separates the target source from an audio mixture
based on a natural language query of the target source. Sim-
ilarly, text-driven Soundfilter [15] is first conditioned on arbi-
trary textual descriptions of sound or alternative audio and then
separates corresponding sound. CO-SEPARATION [16] first
detects target objects in video. The audio-visual separator net-
work next takes a mixed audio signal and the detected object
from its accompanying video as input and separates the sound
responsible for the input object region. In descending order of
average energy, MP-Net [17] separates sound from the recorded
mixture based on a corresponding video. ConceptBeam [18]
uses a concept specifier, such as an image or speech, to ex-
tract the speech of speakers speaking about a concept. Audio-
scope [19, 20] separates all audio associated with the video.
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Figure 1: The illustration of ID-USS-Conformer. Compared
with various visual models, ID-USS-Conformer uses Efficient-
b3 in the visual branch. The visual branch extracts target em-
bedding from the image and injects it into the audio branch. The
audio branch fuses visual embedding and separates the target.

Text-driven separation methods learn target clues from text
descriptions. The separation target of these methods is the se-
mantic information or several acoustic events contained in the
text. Image-based methods are language-independent, which
shows an advantage over text-based methods. ConceptBeam
[18] extracts the speech of speakers speaking about a concept,
not the sound produced by the acoustic events represented in the
image. CO-SEPARATION [16] and MP-Net [17] mainly fo-
cus on separating multi-sources driven by multi-source videos.
The generalization and the detection accuracy of object de-
tector may limit the performance of CO-SEPARATION [16].
Due to the out-of-date model structure, the performance of CO-
SEPARATION [16] and MP-Net [17] is poor. Such scenarios
are not aligned well with our goals.

In this paper, we propose an ID-USS-Conformer, which ex-
tracts event clue from the image and drive the separation model
to separate the target source. In ID-USS-Conformer, the vision
branch adopts the Efficient-b3 to encode the image into a vi-
sion embedding. A Conformer-based separation network is then
used to separate the target source from the mixture conditioned
on the vision embedding.

Based on COCO [21] and FSD50K [22], we build an open-
source ID-USS dataset to verify the effectiveness of ID-USS-
Conformer. ID-USS dataset includes common acoustic events
in life. In this experiment, the visual pattern in the image only
corresponds to a single acoustic event. If it is necessary to sep-
arate the sounds of multiple acoustic events, separation can be
performed iteratively. Signal-to-distortion ratio improvement
(SDRi) [23] is used to evaluate the performance. Experimental
results show the effectiveness of the ID-USS-Conformer, which
achieves 10.139 dB SDRi and outperforms several baselines.

2. System overview
The illustration of the proposed ID-USS-Conformer is depicted
in Figure 1. ID-USS-Conformer consists of two parts: a visual
branch and an audio branch. The visual branch extract target
embedding lies in the image. The audio branch fuses the visual
feature and separates the target source.

2.1. Visual branch

In the visual branch, the vision model extracts visual embedding
of the target event. To obtain a better performance, the vision
model is selected from pre-trained models. Two types of pre-

trained models are selected: pre-trained models on imagenet
classification and CLIP-based pre-trained models. The pre-
trained models obtained through imagenet classification have
better classification and discrimination power. CLIP-based pre-
trained models take more semantic information and generalize
well. For pre-trained models on imagenet classification, several
classic models are selected in comparison, which are pre-trained
ResNet-50 [24], Effecient-b3 [25], Vit [26], and Swin [27]. For
CLIP-based pre-trained models, ResNet-50 in CLIP [28] and
ResNet-50 in AudioCLIP [29] are selected.

Specifically, in pre-trained models, the output of the final
convolutional layer prior to pooling is selected as the output of
the visual model. The formulation of the visual branch is listed
as:

Eim = ReLU(f(VM(Im))), (1)

where Im is the input image. The visual model, VM , keeps the
same structure as the pre-trained model and is initialized using
pre-trained parameters. After passing through the visual model,
visual embedding Eim is obtained via a feed-forward layer with
256 nodes and ReLU activation.

2.2. Audio branch

The audio branch fuses visual cues and drives the separation
network to separate the target source. As the Conformer-based
separation model has achieved superior results in continuous
speech separation [30] and MTASS [7], a Conformer-based sep-
aration model is applied in the audio branch. The detailed struc-
ture of the Conformer block is shown in Figure 2.

In each Conformer block, the feature-wise Linearly modu-
lated (FiLm) [31] layer transforms visual embedding into visual
clues. Visual clues are added after the feed-forward network
(FFN) module. The detailed formulation of FiLm is as follows:

FiLm(H,Eim) = g1(Eim)H + g2(Eim), (2)

where H represents the output of FFN in the Conformer block.
g1 and g2 are feed-forward layers. Eim is the visual embedding
obtained from the visual branch.

In this experiment, the separation model consists of 16 Con-
former blocks. Each Conformer block consists of 4 attention
heads, 256 attention dimensions, and 1024 FFN dimensions. In
the convolution part, an additional squeeze-excitation layer [32]
with reductionRatio = 8 is added. For the FiLm layer, feed-
forward layers have 1024 dimensions.

2.3. The pipeline of ID-USS-Conformer

2.3.1. Model input

ID-USS-Conformer is conducted in the frequency domain, and
spectral magnitude is selected as the input to the model. In
detail, the mixture is first transformed by a short-time Fourier
transform (STFT). For computing STFT, we use a 1024-sample
window size and a 256-sample shift.

2.3.2. Audio-visual process

ID-USS-Conformer receives the image and spectral magnitude
of the mixture and outputs the estimated spectral magnitude.
The formula is as follows:

|Ŝ(t, f)| = ID-USS-Conformer(|Y (t, f)|, Im), (3)

where |Y (t, f)| denotes the spectral magnitude of the mixture.
Im is the input image, which draws the target event. Ŝ(t, f)
represents the estimated spectral magnitude of the source.
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Figure 2: The pipeline of Conformer block. After the FFN layer, The FiLm layer fuses acoustic features and the target visual embedding.

2.3.3. Model output

ID-USS-Conformer outputs the spectral magnitude of the esti-
mated source. After separation, we use inverse STFT (ISTFT)
to restore the separated waveform. The phase of the mixture is
used to restore the separated source.

2.4. Loss function

Two kinds of loss are applied: magnitude-based mean absolute
error (MAE) loss and time domain-based SDR loss. MAE loss
and SDR loss guide training in terms of energy and direction
between the clean source and the estimated source. The detailed
loss function is formulated as:

L = LMAE − λ× LSDR,

where LMAE = ||S − Ŝ||,
LSDR = SDR(s, ŝ),

(4)

where λ is the scale parameter to balance each loss. S and
Ŝ represent the spectral magnitude of the clean source and the
estimated source. s and ŝ are the ground truth waveform and
the estimated waveform.

3. Datasets
3.1. Image data preparation

We choose the COCO dataset [21] for image data. COCO con-
tains 90 types of events, a total of 123287 images. We cut out
the image according to the location and annotation to ensure that
there is only one event in the image. The area of the bounding
part must be greater than 10000. After selection and cutting, 90
types of image data are formed, with a total of 207802 images.

3.2. Audio data preparation

The audio data comes from the FSD50k dataset [22]. FSD50k
encompasses 200 sound classes and has a total of 108 hours of
multi-labeled audio. Since the FSD50k may have multiple la-
bels for a single audio, it may cause label inconsistencies and
confusion between the image and audio. We use AudioSet On-
tology [33] as the reference to select the audio that only contains
one label. After the filtering, a total of 26525 pieces of audio
are obtained, with a total of 102 events and 42 hours.

3.3. ID-USS dataset

For building the ID-USS dataset, we first pick out the matched
types of audio-image pairs. A total of 20 types of audio-image
pairs are selected. ID-USS dataset contains 20 types of paired
audio-image data, which is selected as the target in the experi-
ment. The left 82 types of audio act as interference in the ID-
USS dataset.

In the ID-USS dataset, the data distribution of the target
type is shown in Table 1. After splitting, the training set con-
tains 103192 images with 20 target types, 9 hours of audio with
20 target types, and 26 hours of audio with 82 interference
types. The development set has 4000 images with 20 target

Table 1: The number of images and the audio duration of 20
target events in the ID-USS dataset.

Target Event Image count Audio duration(s)
Person 68036 5187
Bottle 4970 1617
Dishes 3928 704

Car 3834 1430
Cat 3813 2566

Train 3704 3423
Bus 3622 2134

Motorcycle 3169 1505
Dog 3133 2405

Toilet 2672 2654
Microwave 2653 1519
Airplane 2403 1341

Sink 1535 2267
Bird 1392 820

Keyboard 1046 2507
Clock 980 2329

Cutlery 811 847
Cellphone 718 768
Skateboard 438 900

Scissors 335 1161

types, 0.5 hours of audio with 20 target types, and 1.5 hours of
audio with 81 interference types. The test set has 6000 images
with 20 target types, 1.12 hours of audio with 20 target types,
and 3 hours of audio with 82 interference types. Importantly,
there is no overlap among the training, development, and test
sets for image and audio. The details of the ID-USS dataset,
including the instructions and generation scripts, will be open-
sourced soon.

4. Experiments
4.1. Experimental setup

Model performance is evaluated by ID-USS data. During train-
ing, the image is randomly selected, and the label of this image
is acted as the event target. For the mixture, the target audio is
randomly selected but with the same event label. We randomly
select 1-3 audios with different event labels and add them lin-
early to form background interference audio. The target audio
and the background audio are mixed with a random SNR of -5
to 20 dB for each clip. Due to the uneven distribution of image
count in different classes, a balanced sampling strategy [34] is
used in training to ensure that each type of event can be fully
trained. For a fair comparison, the data in the development set
and the test set are mixed with the same rules as the training
set. The selection of the target image, the target audio, and the
interference audio are pre-fixed. The development set is used
to guide the training process, and the test set is used to evaluate
the performance. The SDR of the test set is 5.92 dB.

For the loss function, λ = 1000. The visual model is ini-
tialized with parameters from the pre-trained model, and the
audio separation model starts from scratch. The audio and vi-
sual model update parameters along with the training. Models
are trained with the AdamW optimizer with a 1e-3 learning rate.

3731



The training schedule of self-attention-based models is a warm-
up learning schedule with a linear decay, where the warm-up
step is 12000. For convolution-based models, the learning rate
is halved if the loss of the development set is not improved.
Both models are trained with 200 epochs.

4.2. Baselines

For visual models, pre-trained models on imagenet classifica-
tion1 (ResNet-50 [24], Efficient-b3 [25], Vit [26], and Swin
[27]) and CLIP-based pre-trained models (CLIP-ResNet-502

[28] and AudioCLIP-ResNet-503 [29]) are applied. During this
process, the separation model adopts the Conformer structure.

For audio separation models, ResUNet4 [14] and Soundfil-
ter [15] are first selected, as they show superior performance in
text-driven-based separation. We directly replace the text fea-
tures with the visual features. We also reproduce the Concept-
Beam [18] and CO-SEPARATION5 [16] for comparison. In
CO-SEPARATION, we omit the object detector and only use an
audio-visual separator because the image in this experiment di-
rectly contains the target object. Conv-TasNet6 [3] is also added
for comparison.

4.3. Analysis on visual branch

We compare two types of pre-trained models to select the effec-
tive model in the visual branch. Conformer-based audio sepa-
ration model is fixed in this comparison. Experimental results
are listed in Table 2. For pre-trained models on imagenet classi-
fication, The Efficient-b3-based model performs better than the
ResNet-50-based. This is due to the performance gap in im-
age classification. Efficient-b3 can extract better discriminate
features from the image. The Efficient-b3-based model per-
forms similarly to Vit-based and Swin-based models. As the
ID-USS dataset only consists of 20 types of images, the model
may reach an upper limit on this dataset.

Although CLIP-based ResNet-50 and imagenet
classification-based ResNet-50 use the same network structure,
the information contained in them is different. CLIP and
AudioCLIP pay more attention to semantic information and
have strong generalization abilities. Imagenet classification-
based ResNet-50 has better image classification performance.
CLIP-ResNet-50 performs similarly to imagenet classification-
based ResNet-50. AudioCLIP-ResNet-50 performs worse than
CLIP-ResNet-50 and imagenet classification-based ResNet-50.
AudioCLIP-ResNet-50 is finetuned while training AudioCLIP,
resulting in a decline in the image classification performance.
This demonstrates that the classification ability of the vision
model contributes more to the separation performance in our
task. For effectiveness and efficiency, ID-USS-Conformer
selects Efficient-b3 as the visual model to extract visual
embedding.

4.4. Results analysis

On the basis of Efficient-b3, we evaluate the impact of differ-
ent separation models on the separation performance. We also
compare ID-USS-Conformer with the popular models. The re-
sults are listed in Table 3. The Conformer-based model (ID-

1https://github.com/huggingface/pytorch-image-models
2https://github.com/openai/CLIP
3https://github.com/AndreyGuzhov/AudioCLIP
4https://github.com/liuxubo717/LASS
5https://github.com/rhgao/co-separation
6https://github.com/naplab/Conv-TasNet

Table 2: Parameters and SDRi for the comparison models.

Visual model Audio model Params (M) SDRi (dB)
ResNet-50 [24] Conformer 56.42 8.682
Efficient-b3 [25] Conformer 43.57 10.139

Vit [26] Conformer 116.94 10.120
Swin [27] Conformer 118.08 10.233

CLIP-ResNet-50 [28] Conformer 54.61 8.736
AudioCLIP-ResNet-50 [29] Conformer 54.61 8.254

Table 3: Parameters and SDRi for the comparison models.

Visual model Audio model Params (M) SDRi (dB)
Efficient-b3 Conv-TasNet [3] 34.53 8.686
Efficient-b3 Soundfilter [15] 30.40 8.738
Efficient-b3 ResUNet [14] 76.49 9.431

CO-SEPARATION [16] 57.20 7.579
ConceptBeam [18] 72.82 7.815
ID-USS-Conformer 43.57 10.139

USS-Conformer) outperforms the ResUNet, Soundfilter, and
Conv-Tasnet-based methods. Conformer is good at capturing
long-term dependencies and local correlations, which may con-
tribute to performance improvement. Besides, ConceptBeam
adopts VGG16 [35, 36] in the visual branch and a recurrent
network-based separation model in the audio branch. The vi-
sual model in ConceptBeam aims to bridge spoken audio with
semantically relevant images. CO-SEPARATION applies im-
agenet pre-trained ResNet-18 [24] in the visual branch and
a convolutional network-based separation model in the audio
branch. ID-USS-Conformer performs better, resulting from the
better modeling ability of both the visual and audio branches.
ID-USS-Conformer achieves the best on the test set, which is
10.139 dB SDRi.

5. Discussions and conclusions
In this paper, the proposed ID-USS-Conformer separates a tar-
get source from the mixture driven by the visual target that lies
in the input image. In detail, Efficient-b3 is selected in the vi-
sual branch to process image and generate target visual embed-
ding. Conformer-based separation model first fuses visual em-
bedding and then separates the target source. We also propose
an ID-USS dataset to evaluate the feasibility of ID-USS and the
effectiveness of ID-USS-Conformer.

From experimental results, the image classification ability
of the vision model has a positive impact on final separation
performance. For the audio branch, Conformer performs well.
This is due to the fact that the Conformer can better model
global dependencies. ID-USS-Conformer achieves 10.139 dB
SDRi, which also outperforms several baselines. The codes, the
pre-trained models, and the analyses will be released soon.

In practice, ID-USS can be used to better edit short videos,
such as precisely removing certain sound effects. Besides, by
applying ID-USS-Conformer as the front end, the performance
of the audio classification system can be improved. Due to the
limitation of the ID-USS dataset, the experiments only focus on
separating 20 types of targets. We pay more attention to verify-
ing the feasibility of ID-USS and the effectiveness of ID-USS-
Conformer. In the future, the ID-USS dataset will be expanded.
The class number of target/interference and the quantity of im-
age and audio data will be expanded.
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