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Abstract
In this paper, we present a task-aware fine-tuning method to
transfer Patchout faSt Spectrogram Transformer (PaSST) model
to sound event detection (SED) task. Pretrained PaSST has
shown significant performance on audio tagging (AT) and SED
tasks, but it is not optimal to fine-tune the model from a sin-
gle layer as the local and semantic information have not been
well exploited. To address this, we first introduce task-aware
adapters including SED-adapter and AT-adapter to fine-tune
PaSST for SED and AT task respectively, and then propose task-
aware fine-tuning to combine local information from shallower
layer with semantic information from deeper layer, based on
task-aware adapters. Besides, we propose the self-distillated
mean teacher (SdMT) to train a robust student model with soft
pseudo labels from teacher. Experiments are conducted on
DCASE2022 task4 development set, the EB-F1 of 64.85% and
PSDS1 of 0.5548 are achieved which outperform previous state-
of-the-art systems.
Index Terms: sound event detection, transformer, task-aware,
fine-tune, mean teacher

1. Introduction
Sound Event Detection (SED) is a task of determining both the
categories and timestamps of multiple overlapped events within
a given audio clip. It has wide applications for real world sys-
tems including smart home devices [1] and automatic surveil-
lance [2]. Access to large corpora with strongly-labeled sound
events is expensive and difficult in engineering applications,
weakly-supervised SED task has been set up by DCASE chal-
lenges 1 to evaluate the progress of SED research.

In the past DCASE challenges, due to the shortage of
available labeled data, semi-supervised learning (SSL) based
SED methods have drawn increasing research interest. Among
different SSL methods [3, 4, 5], mean teacher (MT) [5] has
achieved significant SED performance. Other SSL methods
such as interpolation consistency training (ICT) [6], shift con-
sistency training (SCT) [7], and confident mean teacher (CMT)
[8] have been proposed to exploit unlabeled data efficiently. De-
signing extra audio tagging (AT) model or branch [7, 9, 10] to
guide the SED model learning has shown helpful for SED per-
formance. Convolutional Recurrent Neural Network (CRNN)
[11] is commonly used as backbone to perform frame-level fea-
ture extraction and context modeling for SED. To improve the
feature extraction ability of basic convolution, stronger convolu-
tion blocks with attention mechanism have been proposed such
as event-aware module [12], strip pooling based attention mod-
ule [13], frequency dynamic convolution (FDConv) [14] and

1https://dcase.community/challenge2022/task-sound-event-
detection-in-domestic-environments

multi-dimensional frequency dynamic convolution [8] (MFD-
Conv). In [15], the Conformer, a convolution-augmented Trans-
former architecture, is introduced for modeling both local and
global context information.

In DCASE2022, several works were proposed to exploit
external large-scale weakly-labeled AudioSet [16] data. One
way is pretraining SED models on AudioSet, for example,
the forward-backward CRNN (FB-CRNN) and Bi-directional
CRNN (Bi-CRNN) [17] are firstly pretrained on AudioSet, then
with self-training method, the FB-CRNN is firstly fine-tuned
for AT task, then the Bi-CRNN is fine-tuned for SED task with
the weak pseudo label from FB-CRNN, which achieves the first
rank in DCASE2022 task4. Another way is fine-tuning pre-
trained AT models for SED task, for example, Xiao [18] used
RNNs to context model the output of the pretrained audio neu-
ral network (PANN) [19] and audio spectrogram transformer
(AST) [20]. As it is not optimal to directly use the output from
pretrained AT model, in our previous work (i.e., AST-SED)
[21], the Encoder-Decoder block consisting of frequency-wise
transformer encoder (FTE) and local GRU decoder (LGD) is
proposed to effectively fine-tune AST for SED, it extracts dis-
criminative temporal representation with self-attention, and fur-
ther produces a high-temporal-resolution representation, which
is beneficial for SED task. We introduce the SED-adapter as
shown in Figure 1(b) to fine-tune PaSST (the improved AST
model) [22] for SED, where only the LGD block is used as the
frequency-wise attention has been considered in PaSST. The
PaSST-SED model (i.e., PaSST with SED-adapter) achieves
higher performance compared with AST-SED due to the well-
pretrained PaSST.

However, it is still not optimal to fine-tune PaSST with only
attaching the SED-adapter to a single layer as AST-SED do, as
the semantic and local information have not been well combined
and exploited, and the two types of information may not be the
strongest synchronously at the same layer. Besides, the hard
strong-label in the training data may be noisy as the timestamps
are hard to determined [23], the noisy-label issue is deserved to
be explored further.

In this paper, we propose a task-aware fine-tuning method,
as shown in Figure 1(a), to exploit the local and semantic infor-
mation efficiently, based on the task-aware adapters as shown in
Figure 1(b). Specifically, the SED-adapter is attached to shal-
lower layer of pretrained PaSST to exploit the local informa-
tion and the AT-adapter is attached to deeper layer to exploit
the semantic information, which is a better way to fine-tune
PaSST for SED task. We further propose the self-distillated
mean teacher (SdMT), as shown in Figure 3, to train a robust
vice-student model with soft knowledge distillation [24], which
can reduce the adverse impact of noisy labels. Extensive ex-
periments have been conducted on the DCASE2022 challenge
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(a) Task-aware fine-tuning (b) Task-aware adapter

Figure 1: (a) Task-aware fine-tuning: a SED-adapter is attached to shallower layer to exploit local information and a AT-adapter is
attached to deeper layer to exploit global semantic information for efficient fine-tuning. (b) Task-aware adapters: the SED-adapter
is used to fine-tuning for SED task, the AT-adapter is used to fine-tuning for AT task. GAP and FAP denotes global average pooling
and frequency-wise average pooling respectively. LGD denotes local GRU decoder [21], where the NNI denotes nearest neighbour
interpolation. For simplicity, the classification loss is not indicated in the figure.

task4 development set to evaluate the proposed task-aware fine-
tuning and SdMT. Specifically, a performance of 64.85% Event-
based F1-score (EB-F1) and 0.5548 Polyphonic Sound detec-
tion Score scenario1 (PSDS1) is achieved, significantly outper-
forming the 59.60% and 0.5140 of the previous state-of-the-art
AST-SED.

2. Proposed Methods
In this section, we briefly introduce the baseline model, where
the SED-adapter is attached to single layer of PaSST to fine-
tune and mean teacher (MT) is also used as SSL method,
and then analyze its shortcomings. We then present the pro-
posed: (1) task-aware fine-tuning with both SED-adapter and
AT-adapter, (2) self-distillated mean teacher (SdMT).

2.1. Baseline: fine-tune PaSST with SED-adapter and MT

As shown in Figure 1(b), the SED-adapter consists of three
blocks: (1) frequency-wise average pooling (FAP) to extract
a frame-level representation, (2) local GRU decoder (LGD)
to produce a high-temporal-resolution representation, (3) SED
classifier to produce frame-level SED output. The up-sampling
ratio in the LGD is 10. With attaching SED-adapter, the pre-
trained PaSST is fine-tuned for SED task as shown in Figure
1(a) (in the baseline, the AT-adapter is not used), the model,
termed as PaSST-SED, is fine-tuned with the loss function de-
termined as follows,

Lbaseline = Lsed
BCE,frame + λsed

1 Lsed
BCE,clip

+ λsed
2 Lsed

MSE,frame + λsed
3 Lsed

MSE,clip

(1)

where Lsed
BCE,frame denotes frame-level classification BCE

loss for strongly-labeled data, Lsed
BCE,clip denotes clip-level

classification BCE loss for weakly-labeled data, Lsed
MSE,frame

and Lsed
MSE,clip denote frame-level and clip-level teacher-

student consistency MSE loss for unlabeled data respectively.
Referenced to [14], the weight λsed

1 , λsed
2 , λsed

3 is set to 0.5, 2,
2 respectively. The clip-level output yclip is a weighted aver-
age from frame-level output yframe with linear-softmax pool-
ing [25],

yclip =
T∑

i=0
y2
frame,i/

T∑
i=0

yframe,i (2)

where i denotes th ith frame. The teacher model is an exponen-
tial moving average (EMA) from student model.

Although the PaSST-SED outperforms AST-SED, it is still
not optimal as the model is only fine-tuned from a single layer
and richer semantic information is not fully exploited. In the
next subsection, we will detail the proposed task-aware fine-
tuning where the PaSST is fine-tuned from two layers with
two types of adapters, and we further present the self-distillated
mean teacher (SdMT) where a vice-student is trained with soft
knowledge distillation to reduce the adverse impact of noisy la-
bels.

2.2. Improved fine-tuning methods

2.2.1. Task-aware fine-tuning: fine-tune PaSST with both SED-
adapter and AT-adapter

Before introducing task-aware fine-tuning, we first introduce
the AT-adapter, as shown in Figure 1(b), the AT-adapter con-
sists of: (1) Global average pooling (GAP) to extract a clip-level
representation, (2) AT classifier to produce a clip-level output.
With AT-adapter, the pretrained PaSST is fine-tuned for AT task
as shown in Figure 1(a) (SED adapter is not used), the mean
teacher method is also used, and the loss function is determined
as follows,

LAT = Lat
BCE,clip + λat

1 Lat
MSE,clip (3)

where the weight λat
1 is set to 1, Lat

BCE,clip denotes classifica-
tion BCE loss for weakly-labeled data and Lat

MSE,clip denotes
clip-level teacher-student consistency MSE loss for unlabeled
data.

We evaluate the performance of different PaSST layers on
SED and AT task with SED-adapter and AT-adapter, respec-
tively. As illustrated in Figure 2, the deeper layer achieves better
AT performance, but the layer10 achieves the best SED perfor-
mance. We infer that more global semantic information exists
in the last layer but the local information, useful for SED task,
is insufficient in the last layer since the PaSST is pretrained on
AudioSet for AT task

Motivated by this, in the proposed task-aware fine-tuning,
as shown in Figure 1(a), the PaSST model is fine-tuned with
two adapters, where the SED-adapter is attached to layer10
for exploiting local information and AT-adapter is attached to
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Figure 2: AT and SED performance of different PaSST layers.
AT-F1 is used to evaluate the AT performance, PSDS1 is used
to evaluate the SED performance.

layer12 for exploiting more global semantic information. Mean
teacher is also used and the clip-level teacher-student teaching
is changed: the clip-level output of teacher is an ensemble from
two adapters, which is more accurate and effective for teaching.
The loss function determined in the task-aware fine-tuning is as
follows,

Ltask−aware = Lbaseline + λATLAT (4)

where Lbaseline and LAT are same as Eqn. (1) and Eqn. (3)
respectively, λAT is set to 2.

2.2.2. SdMT: self-distillated mean teacher

In the proposed SdMT as shown in Figure 3, same as mean
teacher, the main-student is trained with classification loss
Lclass for labeled data and the teacher-student consistency loss
Lcons for unlabeled data. The teacher model is an EMA from
student model. The detailed training loss of main-student is
the same as Eqn. (1) or Eqn. (4), which depends on if using
task-aware fine-tuning or not. However, different from main-
student, the vice-student is trained with only the soft pseudo
label to learn more knowledge from teacher. The training stage
is termed as soft distillation. For comparison, we also evaluate
the hard distillation.

Specifically, in the soft distillation, for all data includ-
ing labeled and unlabeled, given logits of the vice student and
teacher, the MSE loss is minimized,

Lkd,soft =MSE(δ(zs,frame), δ(zt,frame/τ))

+ λclipMSE(δ(zs,clip), δ(zt,clip/τ))
(5)

where zs,frame, zt,frame, zs,clip, zt,clip denotes student
frame-level logits, teacher frame-level logits, student clip-level
logits, teacher clip-level logits respectively, δ denotes sigmoid
activation function, and the temperature τ is set to 1.

In the hard distillation, the teacher prediction is firstly con-
verted to hard pseudo label using a threshold of 0.5, then the
BCE loss between student and teacher is minimized,

Lkd,hard =BCE(ys,frame, ŷt,frame)

+ λclipBCE(ys,clip, ŷt,clip)
(6)

Figure 3: Self-distillated mean teacher (SdMT). The main-
student is trained with classification Lclass and consistency loss
Lcons, then the knowledge is transferred from teacher to vice-
student with soft distillation (Lkd, training with soft label).

where ys,frame, ys,clip, ŷt,frame, ŷt,clip denote student frame-
level prediction, student clip-level prediction, teacher frame-
level pseudo label and teacher clip-level pseudo label respec-
tively. The weight λclip is set to 0.5 in Eqn. (5) and Eqn. (6).

3. Experiments Setup
3.1. Dataset

For evaluation, we employ the DCASE2022 task4 development
set (DESED) [26] which is composed of training and validation
datasets. The training dataset contains: 1578 weakly-labeled
clips, 3470 strongly-labeled clips, 10000 synthetic-strongly-
labeled clips, and 14412 unlabeled in-domain clips. The val-
idation dataset consists of 1168 strongly-labeled clips.

3.2. Feature Extraction

A 32kHz audio input waveform is first converted into 128-
dimensional log Mel spectrogram features with a window size
of 25ms and frame shift of 10ms. As a result, each 10-second
sound clip is transformed into a 2D time-frequency representa-
tion with a size of (1000×128), then it shares same normaliza-
tion as [22]. Frequency mask [27] is used for data augmentation
with identical parameters to [22].

3.3. Experimental Settiongs

The model is trained over 20 epochs with the AdamW [28]
optimizer, and a ratio of 1:1:2:2 for strong, synthetic-strong,
weak and unlabeled data is used for each batch. Learning rates
(lr) are set to 5e-6, 1e-4 for pre-trained PaSST and the task-
aware adapters. During training, the lr is constant for the first
10 epochs, then reduced with exponential-down schedule to 5e-
7,1e-5 for the last 10 epochs. When using SdMT, the main-
student and teacher are firstly trained over 20 epochs, then the
vice-student is trained over another 20 epochs with the afore-
mentioned settings. For backend processing, median filter and
weak prediction masking [29] are used. In median filter, the fil-
ter time length of event is presented as category (time length)
as follows: Alarm bell ringing (0.32s), Blender (0.71s), Cat
(0.32s), Dishes (0.32s), Dog (0.32s), Electric shaver toothbrush
(4.29s), Frying (3.91s), Running water (3.14s), Speech (0.32s),
Vacuum cleaner (1.09s). Event-Based F1-score (EB-F1) [30]
and Polyphonic Sound detection Score scenario1 (PSDS1) [31]
are used to evaluate fine-grained SED performance, and all
event types share a threshold of 0.5 to obtain hard predictions
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Table 1: Comparison of model performance on DCASE
2022 DESED. Our implementation is based on the codebase
from [14].

Model EB-F1,% PSDS1
CRNN 50.50 0.4006
FDY-CRNN [14] 51.56 0.4256
SK-CRNN [12] 52.77 0.4004
Ensembled PANNs-RNN [18] N/A 0.4450
Ensembled AST-RNN [18] N/A 0.4590
BiCRNN (Winner) [17] 57.30 0.5050
AST-SED [21] 59.60 0.5140
PaSST-SED (ours) 64.85 0.5548

Table 2: Performance of the proposed methods on DCASE 2022
DESED. † denotes our baseline.

Model Task-aware
fine-tuning SSL EB-F1, % PSDS1

PaSST-SED† ✗ MT 62.26 0.5345
PaSST-SED ✓ MT 64.37 0.5435
PaSST-SED ✗ SdMT 62.62 0.5364
PaSST-SED ✓ SdMT 64.85 0.5548

for calculating EB-F1.

4. Results and Discussion
In this section, we firstly compare the fine-tuned PaSST-SED
with previous SOTA models, and show the respective contribu-
tions of task-aware fine-tuning and SdMT. Then we separately
evaluate the task-aware fine-tuning and SdMT with different
configurations.

4.1. Performance of the proposed methods

As shown in Table 1, the PaSST-SED model, with task-aware
fine-tuning and SdMT, achieves EB-F1 of 64.85% and PSDS1
of 0.5548, significantly outperforming the previous SOTA mod-
els such as AST-SED and BiCRNN. This demonstrates that
a general PaSST model, pretrained for AT task, can be well
transferred for SED task with task-adapters and improved fine-
tuning methods such as the proposed task-aware fine-tuning and
SdMT.

As shown in Table 2, task-aware fine-tuning and SdMT both
lead to improvement, but only using SdMT just achieves limited
gain, it may be that the task-aware fine-tuning helps train a ro-
bust teacher with more accurate soft labels to guide the vice-
student learning. Without task-aware fine-tuning and SdMT,
the baseline model (i.e., PaSST-SED with MT) also outper-
forms previous models with achieving the EB-F1 of 62.26% and
PSDS1 of 0.5345 because of the well-pretrained transformer
model and effective SED-adapter.

Table 3: Evaluation of different clip-level teachers in the task-
aware fine-tuning.

clip-level teacher EB-F1, % PSDS1
Fusion 64.37 0.5435
SED-adatper 62.96 0.5357
AT-adatper 64.16 0.5428
Independent 63.16 0.5369

Table 4: Evaluation of the soft and hard distillation in the SdMT.

Model Distillation
type Loss EB-F1, % PSDS1

main-student - BCE&MSE 64.37 0.5435
vice-student soft MSE 64.85 0.5548
vice-student hard BCE 64.30 0.5434

4.2. Evaluation of task-aware fine-tuning method

In this subsection, we evaluate different clip-level AT teach-
ers in the task-aware fine-tuning method. As shown in Table
3, the “Fusion” AT teacher achieves the best performance with
EB-F1 of 64.37% and PSDS1 of 0.5435, the ensemble of clip-
level prediction of SED-adapter and AT-adapter is more accu-
rate to guide the student learning by exploiting unlabeled data
more efficiently. The “AT-adapter” is a suboptimal teacher, as
the performance just decreases slightly compared with “Fusion”
but outperforms “SED-adapter” by a large margin, which shows
the AT-adapter helps exploit richer semantic information from
deeper PaSST layer to guide the student learning in clip-level.
It is interesting that the “Independent” teacher, where the two
adapters in the teacher model guide the two adapters in the stu-
dent model independently, also outperforms the baseline, which
will be explored in the future.

4.3. Evaluation of SdMT method

We compare the soft and hard distillation where the vice-student
in SdMT is trained with only soft or hard pseudo label from
teacher. As shown in Table 4, soft distillation achieves the bet-
ter PSDS1 and EB-F1 compared with hard distillation, and also
outperforms the main-student which demonstrates that soft la-
bel is of rich information to guide the student learning. The hard
distillation achieves no improvement compared with the main-
students, it may be that the event is hard to be determined, and
a fixed threshold of 0.5 is not optimal, which results in noisy
labels. It is also shown that the PSDS1 is improved more appre-
ciably compared with EB-F1 in the soft distillation. One possi-
ble explanation is that the EB-F1 is calculated with hard predic-
tion determined by one fixed threshold of 0.5, but the PSDS1 is
calculated with a set of thresholds, training with soft label may
be more appropriate for PSDS1.

5. Conclusion

This paper presents an improved SED method based on pre-
trained PaSST model. Specifically, the SED-adapter and AT-
adapter are first introduced, and based on the adapters, the
task-aware fine-tuning is proposed to efficiently transfer pre-
trained PaSST to SED task where the SED-adapter is attached
to shallower layer of PaSST to exploit local information and
AT-adapter is attached to deeper layer to exploit semantic infor-
mation. Besides, the SdMT is proposed to train a robust student
with only soft labels to learn more knowledge from teacher. Ex-
perimental results on DCASE2022 task4 demonstrate the effec-
tiveness of the task-aware fine-tuning and SdMT, the pretrained
PaSST is well fine-tuned to outperform previous state-of-the-art
models. In the future, we aim to propose more effective fine-
tuning method to better exploit pretrained AT models and study
how to effectively train SED systems with soft labels.
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