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Abstract
Silent Speech Interface (SSI) can enable interaction in a

new and natural way based on no-audible biosignals generated
by the human body. Electroencephalography (EEG) or surface
electromyography (sEMG) generated during speech production
can be utilized to decode silent speech. However, obtaining
complementary information from EEG and sEMG is still chal-
lenging. This paper presents a hybrid SSI based on the con-
verter between bimodal electrophysiological signals and audio
signals. EEG and sEMG are fused through two sequence-to-
sequence models, and multi-task losses are applied to achieve
complementarity between speech intention and muscle activity
in silent speech. The feasibility of the proposed fusion method
is validated in the silent speech dataset, and an average objec-
tive character error rate (CER) of 7.22% among eight speakers
is obtained. The experimental results show that our bimodal-
based hybrid SSI facilitates the conversion of electrophysiolog-
ical signals to audio.
Index Terms: Silent Speech Interface (SSI), electroen-
cephalography (EEG), surface electromyography (EMG), bi-
modal fusion

1. Introduction
Silent Speech Interface (SSI) is a system that acquires the
speech-related physiological signals from the human speech
production process without audible acoustic signal [1]. Recog-
nition and speech synthesis algorithms are applied in SSI for de-
coding the intended message [2]. SSI offers a new communica-
tion method that can be used in noisy environments and privacy
scenarios [3]. In addition, SSI can also be applied as a clinical
application for people who have undergone a laryngectomy and
provides assistive devices to restore oral communication [4].

Electroencephalography (EEG) [5] and surface electromyo-
graphy (sEMG) [4] are the common physiological measure-
ment methods to capture speech intention and muscle activity
in silent speech. EEG characterizes the neural processing of
speech production while sEMG records neuromuscular infor-
mation from the brain to the speech-related articulators during
muscle fiber contraction [3]. Single-modal physiological sig-
nals first succeeded in recognizing isolated words and continu-
ous sentences [6, 7]. Then deep learning models, such as Long-
Short Time Memory (LSTM) and Transformer, were introduced
in SSI to convert single-mode electrophysiological signals into
speech [4, 8, 9]. In 2022, Gaddy et al. obtained a word er-
ror rate of 42% on the English single-speaker silent speech
dataset [10]. The results of those papers show that there is room
for methodological improvement in reconstructing speech from
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Figure 1: Electrode positions of EEG and sEMG. Gnd is the
ground electrode and FCz is the reference electrode.

silent speech. Previous studies have shown that in tasks such
as motion and emotion recognition[11, 12], fusing information
from different modalities can improve classification accuracy
and reliability [11]. However, only a few studies have focused
on signal fusion in SSI[13, 14]. Hueber et al. [13] fused ultra-
sound and optical video for continuous speech recognition. The
fusion of EMG and EEG was currently limited to the recogni-
tion of phonemes [15]. In order to integrate brain activity sig-
nals with muscle activity signals, decision-level fusion is con-
sidered effective since it contains information about the differ-
ent phases of neural activity in vocalization.

In this paper, we propose a novel mapping method by fus-
ing EEG and EMG signals to implement bimodal-based hy-
brid SSI1. The method demonstrates the effectiveness of fu-
sion methods in reconstructing speech from physiological sig-
nals. The EEG and sEMG signals are trained with sequence-
to-sequence (seq2seq) models separately to obtain complemen-
tary information at the decision level. Moreover, the alignment
information is optimized by the decision fusion method, and
a multi-task strategy is applied to improve the performance of
silent speech. We conduct experiments to demonstrate that bi-
modal fusion physiological signal in SSI is feasible. Besides,
our proposed decision-level fusion method is more effective
than single-modal and other fusion types.

2. Method
In this section, we first introduce the acquisition and pre-
processing of experimental data. Then, we detail the pipeline

1Audio samples can be found at https://stone-wave.github.io/.

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

1184 10.21437/Interspeech.2023-805



Silent Mode

Predicted Audio

Features  Y!:"

Silent sEMG

Features X
!:"#
$

Silent EEG

Features Silent EEG

Silent sEMG

Vocal sEMG

Features X!:"
%

Algorithm 1

Feature 

Transformation
Target Audio

Features Y!:"

MAE 

Loss

Target Fusion

Silent 

Frame-based

duration &!:"#

Vocal Mode

Predicted Audio

Features without Length 

Regulator  Y
!:"#
'

Vocal audio

Vocal sEMG

Silent sEMG

Features X
!:"#
$

Silent EEG

Features X
!:"#
(

EncodersEMG

EncoderEEG

Length

Regulator using

&!:"#

DecodersEMG

DecoderEEG

Length

Regulator using

&!:"#

PostNet

Predicted Audio

Features   Y!:"

H
!:"#
$

H
!:"#
(

Duration Predictor
Phoneme

Classification+ +

H!:"
$

H!:"
(

Fusion Hidden 

Features H!:"

)

Figure 2: The pipeline of hybrid SSI through the fusion of EEG and sEMG.

of hybrid SSI through EEG and sEMG.

2.1. Data Acquisition

Simultaneous EEG and EMG signals are recorded using a 64-
channel Brain Products actiCHamp Plus amplifier at a sampling
rate of 1 kHz. 57 channels of EEG electrode positions are
shown in Figure 1(a). 5 channels of EMG positions are shown
in Figure 1(b). In addition, audio signals are recorded from a
desktop USB microphone at a sampling rate of 16 kHz. Audio
and electrophysiological signals are synchronized using arriv-
ing time stamps. Eight subjects, two of whom are female, par-
ticipate in the experiment. All subjects are healthy and native
Mandarin speakers, aged between 22 and 28 years, with normal
vision and oral communication skills. During the data acqui-
sition, the subjects need to press the start button, then read the
sentences displayed on the computer screen without sound or
aloud, and press the end button when they have finished read-
ing. The sentences displayed on the screen are from the Man-
darin corpus AISHELL3 [16]. Each subject has at least 33.21
minutes and 520 sentences of silent speech. The corpora con-
tain 1170 words and 913 characters. Subjects are required to re-
peat the text five times silently which is articulated but without
sound and once audibly. The vocal electrophysiological signals
are only involved in training and not in testing and validating.
The silent dataset for each subject is divided into a training set,
a validation set, and a testing set in a ratio of 8:1:1. One repeat
time of the sentence is selected as the testing or validation set,
while the rest are performed as the training set.

2.2. Pre-processing and Feature Extraction

The recorded EEG and sEMG signals are analyzed with
EEGLAB [17]. 0.5 ∼ 128 Hz bandpass filter is applied to the
EEG signals, and 1∼ 400 Hz is applied to the sEMG signals. In
addition, ADJUST [18] is used to remove blink artifacts from
the EEG. Both electrophysiological signals and audio signals
are windowed with a 64 ms Hanning window and 16 ms hop
length. The extraction process of sEMG features and the audio

features, i.e., mel spectrograms, is followed [9]. The time do-
main features of EEG are extracted in the same with sEMG. In
addition, three energy of Wavelet decomposition coefficients is
extracted from EEG for each channel [19]. Finally, the EMG
feature dimension is 195 (5 × 39), the EEG feature dimension is
513 (57 × 9), and the mel spectrograms dimension is 80, while
5 and 57 are the channels for sEMG and EEG respectively.

2.3. Model Structure

This paper presents a hybrid SSI model that fuses brain activity
and facial neuromuscular motor information to synthesize au-
dio signals. The pipeline of the proposed hybrid SSI model is
shown in Figure 2. It converts the EEG signals with the sEMG
signals in silent mode into audio features in vocal mode. This
is the first attempt to convert silent signals into audio by fus-
ing EEG and sEMG signals. In this fusion task, the silent EEG
feature is defined as Xe

1:T′ , with Xm
1:T′ of the silent sEMG fea-

tures, where T′ is the number of frames of silent features. Mel
spectrograms are defined as Y1:T, and vocal sEMG features ac-
quired synchronously are defined as Xv

1:T, where T is the num-
ber of frames of vocal features.

Xe
1:T′ and Xm

1:T′ are fed into two separate seq2seq back-
bones with the same structure. The results of these two back-
bones are then combined before PostNet to obtain the predicted
mel spectrograms. Besides, a silent frame-based duration pre-
dictor and a phoneme classification module are introduced to
enhance speech reconstruction performance. Finally, a pre-
trained vocoder generates the waveform with the converted pre-
dicted mel spectrograms.

The seq2seq model combines an encoder, a length regula-
tor, and a decoder. This structure has been demonstrated effec-
tive in a single-modal sEMG-to-speech task [9]. The encoder
used in this paper is an optimized Conformer [20] structure, re-
moving the Macaron structure and using the activation function
called scaled exponential linear unit (SeLU) [21] in the convo-
lutional module. This new structure aims to explore the corre-
lation between audio and physiological signals in silent speech
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Algorithm 1: Fusion Silent Frame-based Duration
Extraction in hybrid SSI

Output: The set of fusion silent frame-based duration
sequence d1:T′

1 Given a fixed alignment weight λalign;
2 Initialize accumulated cost matrix D ∈ RT′×T ;
3 Function get align(C) :
4 for j = 1 to T do
5 for i = 1 to T′ do
6 D(i, j) = C(i, j) + min{D(i−

1, j),D(i, j − 1),D(i− 1, j − 1)} ;
7 end
8 align[j] = argmini D(i, j) ;
9 end

10 end
11 for each sample in features set do
12 C(i, j) = ∥Xm

1:T′ [i]−Xv
1:T[j]∥ ;

13 align1:T = get align(C);
14 Calculate the initial silent frame-based duration

d1:T′ using Eq. 1;
15 end
16 while Train do
17 Train five epochs ;
18 for each sample in features set do
19 Hidden features after the EncoderEEG

He
1:T′ ← EncoderEEG(X

e
1:T′) ;

20 Hidden features after the EncodersEMG

Hm
1:T′ ← EncodersEMG(X

m
1:T′) ;

21 Predicted mel spectrograms without length
regulator
Ŷ∗

1:T′ ← PostNet(DecoderEEG(H
e
1:T′) +

DecodersEMG(H
m
1:T′ ) ;

22 C(i, j) = ∥Xm
1:T′ [i]−Xv

1:T[j]∥+
λalign∥Ŷ∗

1:T′ [i]−Y1:T[j]∥ ;
23 align1:T = get align(C);
24 Calculate target fusion silent frame-based

duration d1:T′ using Eq. 1 ;
25 end
26 Update d1:T′ ;
27 end
28 return d1:T′

production and accelerate the convergence of the network dur-
ing training. He

1:T′ and Hm
1:T′ are the hidden features after the

EncoderEEG and EncodersEMG. The length regulator is de-
signed to solve the problem of frame mismatch between the
electrophysiological features in silent mode and mel spectro-
grams in vocal mode [9, 22], solving the mismatch between the
speech modes. Based on the length regulator, He

1:T′ and Hm
1:T′

can be regulated into He
1:T and He

1:T using fusion silent frame-
based duration d1:T′ . We can match the speech rates of different
patterns. d utilized in the length regulator is computed by Algo-
rithm 1 and Eq. 1 in the training stage. The duration predictor
is trained using Hm

1:T′ , which aims to consider that sEMG is
closer to the final production of speech than EEG. The fusion
silent frame-based duration sequence is obtained from the pre-
trained duration predictor in the inference stage. Finally, He

1:T

and Hm
1:T are summed to train the phoneme classification.

d1:T′ [i] =
T∑

j=1

I(align1:T[j] == i) (1)

where I is an indicator function.
The proposed model is trained to optimize three loss func-

tions simultaneously: a speech synthesis loss, which predicted
mel spectrograms before and after the PostNet as [23]; a dura-
tion loss and a phoneme classification loss as auxiliary tasks to
aid convergence. Besides, this study utilizes Parallel WaveGAN
(PWG) [24] as the vocoder in hybrid SSI.

3. Results
In this section, we evaluate the proposed method in hybrid SSI.
We first introduce the experimental setting. Then, we evaluate
the proposed model with the objective and human metrics. Fur-
thermore, we conduct a comparison study on the fusion types.
Finally, we provide more insights into the brain region study
from the aforementioned results.

3.1. Experimental Settings

The implementation of the proposed hybrid SSI model is based
on the open-source ESPnet toolkit [25]. The number of encoder
and decoder blocks is 6, and the number of attention heads is
4. The attention dimension of feature transformation is set to
384, and the kernel size of the convolutional module in the op-
timized Conformer is 7. Besides, the size of the phoneme vo-
cabulary is 139, including consonants and toned vowels. The
batch size is eight signals, and the epoch is 160. λalign is set
to 10 as [8]. The feature transformation module’s learning rate
schedule and the other hyper-parameters are consistent as [9].
PWG is pre-trained by audio signals from all speakers with the
implementation2.

The character error rate (CER) using automatic speech
recognition (ASR) evaluation tool is the objective evaluation
criterion in our paper. CER is obtained by computing the
ground truth text and the text recognized from an ASR called
Citrinet [26]3. The lower CER suggests that the context of pre-
dicted audio signals are close to the silent speech. As a refer-
ence, the average CER of the ground truth audio signal for the
testing set is 0.85%.

The CER of the validation set is calculated for each epoch
during training. The parameter of the epoch with the lowest
CER is chosen as the best model for testing. EEG and the
sEMG features from the testing set are input to the best param-
eter model to generate the predicted audio as the testing result
for each speaker. Besides, for the objective quality evaluation
of the predicted audio in the testing set, mel cepstral distortion
(MCD) [27] is also introduced. The lower MCD indicates a
better similarity of the predicted audio signals with the ground
truth.

3.2. Model Performance

The objective evaluation of the results of the proposed fusion
method on the hybrid SSI task is shown in Table 1. ↑ (↓) means
higher (lower) is better. The second row shows the CER results
obtained by the ASR toolkit for the predicted speech obtained
from the testing set. Our proposed method obtains an average

2https://github.com/kan-bayashi/ParallelWaveGAN
3https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt zh

citrinet 512
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Table 1: The objective evaluation of the proposed model

Spk1 Spk2 Spk3 Spk4 Spk5 Spk6 Spk7 Spk8 Average Std
CER(%)↓ 1.00 9.63 5.42 11.3 5.93 12.39 9.14 2.94 7.22 3.79

MCD(dB)↓ 2.76 3.09 2.95 3.55 4.03 3.10 3.05 2.89 3.18 0.39

Table 2: The human evaluation of the proposed model

Spk1 Spk2 Spk3 Spk4 Spk5 Spk6 Spk7 Spk8 Average Std
CER(%)↓ 1.48±1.05 7.51±4.42 1.48±1.87 4.72±4.85 2.50±3.95 1.48±1.87 14.56±0.92 4.59±3.42 6.89 5.22
MOS↑ 4.33±0.57 3.88±0.59 4.63±0.56 3.96±0.84 4.42±0.61 2.96±0.99 3.83±0.74 4.13±0.83 3.92 4.82

Table 3: Comparison results of the fusion type study

Fusion Type CER(%) ↓ MCD(db)↓
Only EEG 38.85±14.98 4.55±0.77

Only sEMG 10.52±5.24 3.10±0.31
Feature Concatenate 13.14±6.74 3.26±0.31

Concatenate after Encoder 8.34±4.47 3.14±0.41
Add after Encoder 9.50±4.41 3.05±0.23

Concatenate after Decoder 9.90±7.19 3.30±0.49
Proposed 7.22±3.79 3.18±0.39

CER of 7.22% with a standard deviation of 3.79% on all sub-
jects. The results of silent speech reconstruction vary between
speakers, with Spk1 obtaining the best result of 1.00% while
Spk6 have the worst CER of 12.39%. The third row shows
the MCD obtained between the predicted audio signals and the
ground truth. The speech quality evaluation results differ from
the accuracy, but the best quality results are also reflected in
Spk1.

12 native Chinese listeners (20∼ 28 years old) are recruited
to evaluate the proposed method’s results. These listeners have
all passed a pretest of normal hearing function. We provide 5
randomly selected speech samples from the predicted speech
results of each subject’s testing set and for a total of 40 speech
samples. Listeners are required to transcribe the speech in a
quiet environment with headphones. In addition, Mean Opin-
ion Scores (MOS) are employed as the quality evaluation of the
predicted speech, with evaluation scores ranging from 0.5 to
5.0 with an interval of 0.5 points. Higher MOS scores represent
higher voice quality.

Table 2 lists the results of the human evaluations, where ±
indicates the standard deviation of the metrics across 12 listen-
ers. The predicted speech obtained an average CER of 6.89%
and a MOS of 3.92 among human listeners. Due to the variabil-
ity in subjective ratings between listeners, all subsequent sub-
sections of this paper are objective evaluations.

3.3. Comparison with Other Fusion Types

To illustrate the method’s superiority in this paper, we compared
the single-modal method with the fusion method at different lo-
cations. As shown in the second and third rows of Table 3,
compared to the single-modal method using only sEMG, the
method proposed in this paper achieves a 3.30% reduction in
CER. Compared to the single-modal method using only EEG,
the method proposed in this paper achieves a 31.63% reduction
in CER and a 1.37 reduction in MCD. These results demon-
strate that the fusion method proposed in this paper successfully
obtains bimodal information in hybrid SSI. The fourth row in
Table 3 shows the results of the direct concatenation of sEMG

Table 4: Results of the brain region study

Brain Region Number of
Channels CER(%)↓ MCD(dB)↓

w/o Frontal Lobe 37 7.34±4.58 4.01±0.35
w/o Central Sulcus 38 9.46±7.89 4.00±0.31
w/o Parietal Lobe 42 7.15±5.41 4.05±0.43

w/o Occipital Lobe 54 6.61±4.04 4.02±0.41
w/o Temporal Lobe 47 7.57±4.73 3.18±0.39

Full 57 7.22±3.79 3.18±0.39

with EEG features. The fifth and sixth rows show the results
of concatenating or summing hidden representations obtained
after EncodersEMG and EncoderEEG, respectively. The seventh
line shows the results of the positional concatenate consistent
with the methods of this paper. Compared to these methods,
the fusion method proposed in this paper outperforms others.
Fusing in the middle of the model or the decision level achieves
a lower CER and improves the speech quality compared to the
direct concatenate of features. Direct concatenation may ignore
the delay between brain activity and neuromuscular motor in-
formation in speech production.

3.4. Brain Region Study

To analyze the effect of different brain regions on the hybrid
SSI, we compare the objective results of removing a single brain
region from the EEG, as shown in Table 4, w/o is without. Com-
paring the results of removing a single brain region show that
the Occipital lobe has a negative effect on the hybrid SSI. Con-
versely, the Central sulcus has a more significant effect on the
results because it contains motor information [28].

4. Conclusions
In this paper, we propose a bimodal fusion-based SSI and inves-
tigate the feasibility of converting fused EEG and sEMG signals
into audio signals. We demonstrate experimentally that the bi-
modal fusion model performs better than the single-modal in
the hybrid SSI task. The method proposed in this paper leads
to complementary information that can be obtained from EEG
and sEMG to improve the accuracy of silent speech decoding.
It also provides a feasible direction for related SSI research.
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