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Abstract
Boosted by self-supervised learning (SSL) on large amounts of
unlabeled data, computationally demanding transformer-based
audiovisual ASR (AV-ASR) achieves state-of-the-art perfor-
mance. In this work, we are the first to propose teacher-student
model distillation for an efficient and noise-robust AV encoder
for AV-ASR. First, we compare two options for the teacher, a
non-task-specific and a task-specific one. Second, we investigate
the design and the components in the student neural network.
Third, we explore loss function choices during distillation. By
distillation with a simplified loss function, the final efficient
conformer-based student has 69% fewer parameters and 23%
less computational power than the teacher, but excels the base-
line student with a WER of 4.6% (11.4%) in clean condition,
and with 20.2% (35.7%) in 0dB babble noise. On average over
noise types in 0dB SNR, our proposed student even achieves
more than 50% relative WER reduction compared to the baseline
student.
Index Terms: audiovisual speech recognition, efficient and
robust networks, teacher/student model distillation, transformer,
conformer

1. Introduction
Audiovisual speech recognition (AV-ASR) utilizes the move-
ments of the speaker’s lips and mouth region as compensation for
acoustic information to recognize the spoken utterances. Com-
pared to pure acoustic ASR, AV-ASR has shown its superior
performance in acoustically noisy environments [1, 2, 3]. The
robustness of AV-ASR enables its application in smartphones or
cars in noisy or multi-talker environments.

AV-ASR models usually comprise an AV encoder and an
autoregressive decoder to predict the output token sequence. The
AV encoder extracts the audio and video features by an audio-
visual frontend (red block of Fig. 1) and models the temporal
dependencies of these two modalities by the sequence model-
ing architecture (encoder blocks with dark green background
in Fig. 1). The sequence modeling architecture of an AV en-
coder has experienced a paradigm shift from recurrent neural
networks [4, 5] to all-attention-based transformers [6], build-
ing upon the success of transformers in neural machine transla-
tion [7] and acoustic ASR tasks [8, 9, 10]. A conformer [11], a
variant of the transformer designed specifically for ASR, has also
been employed in AV-ASR [2] to improve performance. For a
better initialization of AV encoders, pre-training approaches have
been investigated. Afouras et al. [6] pre-trained a visual CNN
frontend in the encoder on the non-public MV-LRS dataset [12].
Ma et al. [2] pre-trained the entire encoder with an isolated
word classification task on the Lip Reading in the Wild (LRW)
dataset [13]. Recently, Shi et al. [14] applied self-supervised
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Figure 1: Teacher-student architecture proposed in this work.
The M=|L|=2 prediction head outputs and the encoder block 8
and 12 outputs are used in (2) to compute J`, ` ∈ L = {8, 12}.

learning (SSL) to pre-train the AV encoder on a large amount
of unlabeled audiovisual data. The resulting audiovisual hidden
unit BERT (AV-HuBERT) model achieves state-of-the-art per-
formance on the Lip Reading Sentences 3 (LRS3) audiovisual
speech recognition task [15].

Along with the performance improvement by the SSL pre-
trained AV encoder, the memory requirements and computa-
tional complexity are drastically increased. Most research to
compress the oversized SSL pre-trained models is conducted
in language modeling [16, 17] and ASR based on acoustic in-
put [18, 19, 20, 21, 22]. A common approach to improve the
model efficiency is the model distillation with a teacher-student
neural network [19, 20, 21], where a small student model learns
the targets generated by the pre-trained large teacher model. The
first work to distill an SSL pre-trained model in acoustic ASR
is DistilHuBERT from Chang et al. [19]. Wang et al. [21]
and Lee et al. [20] improved the performance of the distilled
model with different student model designs. These works are
evaluated in different downstream tasks on the speech processing
universal performance benchmark (SUPERB) [23], where the
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ASR task is assessed on the clean datasets of Librispeech [24].
A major difference between AV-ASR and ASR based on acous-
tics is that AV-ASR demands a visual frontend to process the
video information. The ResNet-based visual frontends applied
in prominent AV encoders [1, 2, 14] have a small size but an
extremely high computation cost. Efficient visual frontends have
so far only been explored by Ma et al. [25] on the LRW isolated
word classification task.

For continuous audiovisual speech recognition, efficient vi-
sual frontends have not been explored. To the best of our knowl-
edge, model distillation to obtain an efficient AV encoder has so
far not been applied to AV-ASR. In addition, only a few recent
works in acoustic ASR explored the robustness of the distilled
student against noise [26]. Teacher/student architectures which
are robust against noise are insufficiently investigated as con-
cerns the AV encoder.

In this work, we therefore propose a teacher-student frame-
work for efficient AV encoders and evaluate their performance
on AV-ASR tasks. To improve the noise robustness of distilled
AV encoders, we first generate student learning targets specific
to AV-ASR tasks by utilizing a finetuned teacher. Second, we
increase the depth of student models and simplify the loss terms
to learn more linguistic features, which are proven more prof-
itable for speech recognition tasks [27, 28]. Third, we build
the student with advanced conformer models. To improve the
efficiency of distilled AV encoders, we apply a light-weight
ShuffleNetv2-based visual frontend to significantly reduce
the computational complexity.

The paper is structured as follows: In Section 2, we intro-
duce our proposed methods. Section 3 gives the experimental
setup, training details, and then results and discussion on the
LRS3 AV-ASR task. The paper is concluded in Section 4.

2. Methods
2.1. Our Investigated Teacher-Student Framework
The proposed teacher-student framework for the audiovisual
(AV) encoder is shown in Fig. 1. The teacher (light green on the
left) and the student (light green on the right) use the same im-
age sequence vT

1 =(v1,v2, ...,vT ) and audio feature sequence
a4T
1 =(a1,a2, ...,a4T ) as input to an audiovisual frontend fol-

lowed by positional encoding. Note that in our case the frame
rate is 25 Hz (video) and 100 Hz (audio), causing the fourfold
length 4T of the audio feature sequence. Both, teacher and
student models are transformer encoder architectures, with the
latter comprising less parameters and reduced computational
complexity for improved efficiency by design. The M predic-
tion heads in the blue block project the student’s output to M
vectors, where each vector of length F is trained to match the
learning targets from the outputs of the teacher’s encoder blocks.
As a framework baseline, we employ the student model design
and distillation settings from DistilHuBERT [19].
Baseline teacher model: As the baseline teacher model,
the base configuration of the audiovisual hidden unit BERT
(AV-HuBERT [1]) is chosen, which is pre-trained on noise-
augmented and unlabeled audiovisual data from the Vox-
celeb2 [29] and LRS3 datasets [15]. The base AV-HuBERT
uses a ResNet-based audiovisual frontend and a total of 12
transformer blocks each having frozen parameters during dis-
tillation. This baseline teacher encoder is not finetuned on any
specific task, so it produces general audiovisual representations.
Baseline student model: As a baseline student model, in accor-
dance with the student design employed by DistilBERT [16]
for language modeling and DistilHuBERT [19] for speech
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Figure 2: Single transformer encoder block during training
with a self multi-head attention (yellow block). The first fully
connected layer projects the feature dimension from D to the
expanded feature dimension C > D.

tasks, we use the same audiovisual frontend and the encoder
block design as the teacher model, with the exception of having
a reduced number of encoder blocks (N = 2). The student is
initialized with the audiovisual frontend and the first two encoder
blocks of the teacher.
Distillation: For distillation, the baseline framework uses M =
3 prediction heads. The learning targets are outputs from the 4th,
8th, and 12th encoder blocks of the teacher. The according loss
function is

J =
∑

`∈L
J` (1)

with ` ∈ L = {4, 8, 12} indexing those teacher encoder blocks
that contribute to the loss. The loss term in layer ` is given by

J` = λJcos
` + JL1

` (2)

= −λ
∑

t∈T
log σ

(
cos
(
f`,t, f `,t

))
+
∑

t∈T

1

D
‖f`,t − f `,t‖1

and consists of a cosine similarity −Jcos
` and an L1 loss JL1

`

with some hyperparameter λ. The F -dimensional feature vec-
tor produced by the teacher’s `-th encoder block at time step
t ∈ T =(1, 2, ..., T ) is denoted as f `,t, while the entire sequence
is f `,1:T = (f `,1, f `,2, ..., f `,T ). The matching F -dimensional
feature vector at time step t processed by the student model and
the prediction heads is f`,t taken from sequence f`,1:T . Minimiz-
ing the loss (1) during training aims at maximizing the cosine
similarity and reducing the L1 loss simultaneously.

2.2. Proposed Teacher and Distillation Loss
Task-specific teacher: Models pre-trained by SSL are capa-
ble of extracting general representations that are suitable for
a wide range of downstream tasks. AV-HuBERT models also
demonstrated their utility in various audiovisual tasks such as
AV-ASR [1, 14], automatic lip-reading [30, 31], speaker verifi-
cation [32], and audiovisual speech enhancement [33]. In recent
works on model distillation [19, 20, 21, 26], SSL pre-trained
models are used directly as teacher, but the choice of the teacher
is insufficiently investigated. Here, striving to obtain audiovisual
representations from the teacher that are more specific for the
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Table 1: WER (%) on the LRS3 test set. Models are evaluated with clean speech, at an SNR of 0dB babble noise, and at an SNR of 0dB
second interfering talker (talker). The student has N encoder blocks as depicted in Fig. 1. Parameter D < F is the feature dimension
and C > D is the expanded feature dimension as shown in Fig. 2. Best student results are in bold font, second best are underlined.

Method
Teacher Student Distillation #params in

the student
#FLOPs/

frame

WER (%)

Task-
specific

Init. by
teacher

Visual
frontend (FE)

Transformer/Conformer
M

Learning
target

0 dB
babble

0 dB
talker clean

Type N D C

base AV-HuBERT [1] teacher ResNet18 Transf. 12 768 3072 3 4,8,12 103M 875M 6.3 4.0 1.9

1© Baseline student 7 3 ResNet18 Transf. 2 768 3072 3 4,8,12 32M 734M 35.7 41.4 11.4
2© + Task-specific teacher 3 3 ResNet18 Transf. 2 768 3072 3 4,8,12 32M 734M 33.7 37.7 10.6
3© - Student initialization 3 7 ResNet18 Transf. 2 768 3072 3 4,8,12 32M 734M 25.5 27.2 7.1
4© + Thin and deep student 3 7 ResNet18 Transf. 6 384 3200 3 4,8,12 31M 678M 20.4 19.0 5.0
5© + Simplified loss 3 7 ResNet18 Transf. 6 384 3200 2 8,12 31M 678M 20.4 19.0 4.6
6© + Conformer student 3 7 ResNet18 Conf. 6 384 1536 2 8,12 32M 674M 20.2 17.5 4.6
7© + Light-weight visual FE 3 7 ShuffleNetv2 Conf. 6 384 1536 2 8,12 22M 107M 22.9 21.1 4.8

AV-ASR task, we finetune the AV-HuBERT model on labeled
training data from the LRS3 AV-ASR task and use the finetuned
AV encoder as the task-specific teacher in our approach.
Simplified loss: In the baseline framework, the targets for the
student are generated by the set of teacher encoder block layers
L = {4, 8, 12}. The linguistic features in the later layers of the
encoder have more influence on the ASR performance. This
motivates us to simplify the loss function by learning the targets
only from layers L = {8, 12}, see Fig. 1.

2.3. Proposed Student

Student initialization: An appropriate model initialization can
often result in improved performance. A recent study about the
interpretability of transformer-based ASR [28] found that the
early transformer layers tend to extract acoustic features, which
is beneficial for speaker identification tasks, while later layers are
responsible for extracting phonetic information, which is more
important for ASR. For this reason, the weights of the teacher’s
early layers may not be optimal starting weights for the student.
Accordingly, we train the student model from scratch during
distillation and examine the impact of student initialization.
Thin and deep student: The trade-off between width and depth
in deep learning has been widely discussed [34, 35]. In recent
transformer-based acoustic ASR, a deeper neural network has
been demonstrated to be effective [20, 36]. Our chosen distilla-
tion baseline may not have sufficient depth to effectively capture
various patterns and model the interactions between video and
audio modalities, as the student only uses N = 2 transformer
encoder blocks. In this work, we propose to reduce the feature
dimension from F toD < F and to adjust the feature dimension
C > D (depicted in Fig. 2) to build a thinner but deeper student.
Conformer student: The conformer [11] adds a convolutional
block after the multi-head self-attention (MHSA) employed in
the encoder blocks. The conformer focuses more on local in-
formation and has been used effectively for ASR [11] and also
AV-ASR [2] tasks. Compared to the student model in the base-
line framework, we replace the transformer encoder blocks with
conformer layers to improve the AV-ASR performance.
Light-weight visual frontend (FE): In the AV encoder, the
visual frontend based on ResNet comprises much fewer pa-
rameters than the subsequent transformer, but its computational
load is extremely large due to convolutional operations. We
substitute the ResNet in the audiovisual frontend of the stu-
dent with a light-weight ShuffleNetv2 [37] to further reduce
the memory and computational cost. We modify the original
ShuffleNetv2 architecture by substituting the first 2D con-
volutional layer by a 3D convolutional layer with kernel size
5× 5× 7 to incorporate the additional temporal dimension, and
reduce the number of output channels in the last convolutional
layer from 1024 to 512.

3. Evaluation and Discussion
3.1. Experimental Setup and Training Details

Databases and pre-processing: We evaluate our models on the
Lip Reading Sentences 3 (LRS3) audiovisual speech recognition
task. The LRS3 dataset is the largest publicly available labeled
AV-ASR dataset, which includes 433 h of labeled audiovisual
training data collected from TED and TEDx talks [15]. The
video frames and raw speech signal have a sample rate of 25 Hz
and 16 kHz, respectively. We follow the pre-processing pipeline
of the LRS3 dataset detailed in [14]. As input audio features we
use 26-dimensional log-filterbank outputs, which are extracted
with a 25 ms window and a frame shift of 10 ms, resulting in
100 audio frames per second. Video frames are converted to
grayscale and cropped to a 96× 96 region of interest based on
the face alignment.
Model distillation: Based on the PyTorch-based s3prl
speech toolkit [23], we implement the teacher-student model
distillation for AV encoders. During model distillation, we use
a batch size of 4 with an accumulate gradients of six batches to
simulate the batch size B = 24. The teacher-student model is
trained on a single Nvidia A100 GPU for 100k updates. The
learning rate is linearly increased to 0.0002 in the first 14% of
updates, then linearly decreased to 0. The weight of the cosine
similarity in loss term (2) is λ = 1 for all experiments.
Fine-tuning for AV-ASR: For a fair comparison, we report the
same decoder architecture as the baseline method [1] to finetune
the models for all experiments. The decoder network consists
of six transformer decoder blocks (cf. Fig. 2 in [10]) with 57M
parameters. The outputs of the encoder-decoder architecture
are subword tokens generated by SentencePiece [38] with
a vocabulary size of 1000. The finetuning process is done using
the PyTorch-based fairseq toolkit. We finetune the entire
encoder-decoder model for 60k updates. The learning rate is lin-
early increased to 0.001 for the first 30% of updates, then linearly
decreased to 0. The encoder is frozen for the first 48k updates.
We apply the same data augmentation as in AV-HuBERT [1],
where 25% of the training data is augmented with 0dB noise
chosen from babble, music, natural noise, and second interfering
talker condition. There is no speaker overlap in babble noise and
second interfering talker condition among different splits.
Evaluation in noise environments: To add noise to our speech
data, we follow the exact same procedure as detailed in [1]. First,
we generate babble noise by mixing utterances from 30 different
speakers from the MUSAN dataset [39] where each speaker is
used exclusively for either the training, validation, or the test
partition. We also evaluate our approaches for speech with a
second interfering talker from LRS3 data following [1] for com-
parability reasons. To accurately evaluate the noise robustness of
models, we report the average word error rate (WER) based on
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Figure 3: WER (%) on the LRS3 test set at different SNRs in
babble noise. Student identifiers i© from Table 1.

ten inference passes, each using different random noise snippets
from the specific noise type (i.e., babble or interfering talker)
and signal-to-noise ratios (SNRs).

3.2. Results and Discussion
The results of our experiments on compressing the audiovisual
encoder and reducing its computational complexity are presented
in Table 1. The WER is measured in three conditions: clean
speech, speech mixed with 0 dB babble noise, and speech with
a second interfering talker at 0 dB. Note that we follow the
common practice on the LRS3 task to report performance only on
test data. However, we observed that the results on the validation
partition follow the same trend as on the test partition.

The teacher model (base AV-HuBERT [1]), reported in
the first row has a total of 103M parameters and requires 875M
floating point operations per frame (#FLOPs/frame). The results
of the student models are displayed starting from the second
row. The baseline student 1© is much more efficient, however,
its performance clearly deteriorates on clean speech and even
more in noisy environments. We applied our methods incre-
mentally while constraining the #params in the student model
to approximately 32M. First, a task-specific teacher 2© during
distillation brings a slight improvement both on noisy and clean
speech. Second, training of the student from scratch 3© and a
deeper student 4© result in substantial improvements across all
test conditions (e.g., -3.5% absolute WER and -2.1% absolute
WER on clean speech, respectively). Third, our simplified loss
5© gives another -0.4% absolute WER on clean speech. The ap-

plication of the conformer encoder blocks 6© results in our best
performing student model across all conditions and demands
69% fewer parameters and 23% less #FLOPs/frame compared
to the teacher model. It excels the baseline student with a WER
of 4.6% (11.4%) in clean condition, with 20.2% (35.7%) in 0dB
babble noise, and with 17.5% (41.4%) in 0dB interfering talker.
On average over noise types in 0dB SNR, our proposed student
achieves more than 50% relative WER reduction (in clean even
60% relative WER reduction) compared to the baseline student.
Finally, a light-weight visual frontend 7© reduces the student
parameters and #FLOPs/frame to 21% and 12%, respectively,
when compared to the teacher model, with only a small perfor-
mance loss compared to our best (in terms of WER) performing
student model 6©.

Fig. 3 depicts the WERs of all approaches presented in
Table 1 assessed on different SNRs of babble noise. Expectedly,
the teacher model exhibits the best WER performance across all
SNR levels. Compared to the teacher, the student models show
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Figure 4: WER (%) on the LRS3 test set at different SNRs in
second interfering talker. Student identifiers i© from Table 1.

more degradation of the WER performance with decreasing
SNR. The three deeper student models 4© 5© 6© have similar
performance across all SNRs. In the extreme challenging -5dB
and -10dB babble noise conditions, all student AV encoders
exceed a WER of 40%. Above 0dB SNR, the deeper student
AV encoders ( 4©- 7©) show a clear improvement compared to the
baseline student 1©. Computing the average WER over all SNRs
in babble noise, the student model 6© demonstrates with 26.5% a
significantly lower WER as the baseline student 1© with 36.5%.

Furthermore, the performance of the models from Table 1
is evaluated with a second interfering talker, as with different
SNR, as shown in Fig. 4. The teacher model performs the best
and achieves an impressive WER of 11.7% at -10dB SNR. Our
best performing student 6© from Table 1 also has the lowest
WERs across all evaluated SNRs compared to the other student
models. While the performance of a purely acoustic ASR system
is typically challenged in adverse conditions such as the presence
of interfering talkers, our best distilled student model 6© achieves
good WERs ranging from 4.6% to 17.5% (SNR of 0dB) in such
a condition. Computing the average WER over all SNRs for an
interfering talker, the student model 6© achieves 19.8%, whereas
the baseline student 1© has an almost doubled WER of 38.8%.

4. Conclusions
In this work, we presented a teacher-student distillation frame-
work for developing efficient audiovisual encoder models. We in-
vestigated various optimization strategies within this framework
to enhance the efficiency and noise robustness of the distilled
AV encoder in audiovisual speech recognition tasks. Our best
performing student model has 69% fewer parameters and 23%
less computational power compared to the teacher, but excels
the baseline student with a WER of 4.6% (11.4%) in clean con-
dition, with 20.2% (35.7%) in 0dB babble noise, and with 17.5%
(41.4%) in 0dB interfering talker condition. On average over
noise types, this amounts to more than 50% relative WER reduc-
tion among the students at an SNR of 0dB. Our work enables the
deployment of noise-robust audiovisual speech recognition sys-
tems on resource-constrained devices, and our distilled encoder
models can be easily applied to other audiovisual tasks.
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