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Abstract
Expressive human speech generally abounds with rich and flex-
ible speech prosody variations. The speech prosody predictors
in existing expressive speech synthesis methods mostly pro-
duce deterministic predictions, which are learned by directly
minimizing the norm of prosody prediction error. Its unimodal
nature leads to a mismatch with ground truth distribution and
harms the model’s ability in making diverse predictions. Thus,
we propose a novel prosody predictor based on the denois-
ing diffusion probabilistic model to take advantage of its high-
quality generative modeling and training stability. Experiment
results confirm that the proposed prosody predictor outperforms
the deterministic baseline on both the expressiveness and diver-
sity of prediction results with even fewer network parameters.
Index Terms: expressive speech synthesis, prosody prediction,
denoising diffusion probabilistic model

1. Introduction
Speech synthesis aims to convert a given text into the corre-
sponding speech audio. In modern speech synthesis models, the
naturalness and sound quality of the synthesized audios have
been promoted to a human-like level by incorporating neural-
network-based acoustic models and vocoders, which are now
widely accessible in many real-world applications [1, 2, 3, 4].
On the other hand, how to reach the expressiveness and diversity
of human speech in synthesized audio remains an open ques-
tion. Thus, the task of expressive speech synthesis is drawing
growing attention recently.

Existing expressive speech synthesis methods generally
model the prosody in human speech as an additional condition
to the text-to-speech (TTS) backbone to stylize the synthesized
audio [5, 6, 7]. During training, the speech prosody represen-
tation is extracted from the target speech as the desired condi-
tion of the TTS backbone and the training target of a speech
prosody predictor, which makes its prediction according to the
input text [8]. During inference, given the input text, the pre-
diction result of the trained speech prosody predictor is applied
as the actual condition of the TTS backbone. As a result, the
speech prosody prediction module is not only necessary for the
inference process in real-world applications, but also the crucial
component that directly affects the expressiveness and diversity
of the prosody in synthesized speech.

Typical speech prosody predictors like the phoneme dura-
tion, fundamental frequency (pitch), and energy predictors in
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FastSpeech2 [3] and FastPitch [9] take pre-extracted duration,
pitch, and energy features as the target speech prosody rep-
resentation, and utilize the output of the text encoder in TTS
backbone as prediction conditions. Other methods manage to
improve the prediction conditions by incorporating context in-
formation or semantic structure of the input text [10, 11]. The
prosody predictors in these methods generally establish a de-
terministic mapping from input text to predicted prosody, and is
trained via minimizing the L1 or L2 norm of prediction error, by
assuming that the target prosody distribution is an independent
unimodal Laplace or Gaussian distribution [12].

However, the prosody of human speech is extremely flex-
ible. Changes in intonation, speaking rate, emphasis, context,
and other factors provide numerous ways to utter the same text,
resulting in multimodal and correlated prosody distributions.
Consequently, the diversity and expressiveness of the prediction
results from previous prosody predictors tend to be diminished
by its deterministic characteristics and the over-smoothing ef-
fect due to simplified assumptions on prosody distribution.

Thus, we propose to replace the deterministic prosody pre-
dictors with an alternative based on the denoising diffusion
probabilistic model (DDPM) [13]. DDPM and its variants have
shown powerful capacity in generative modeling with respect to
high-quality sampling, gorgeous model coverage, and sample
diversity [14, 15, 16, 17, 18]. Moreover, DDPMs can be trained
with a simplified variant of the evidence lower bound of data
likelihood, leading to stable optimization. Based on this think-
ing, this paper focuses on investigating the use of DDPMs for
modeling the diverse and flexible one-to-many mapping from
text to prosody in human speech. Experiment results reveal that
the proposed DDPM-based prosody predictor significantly out-
performs the deterministic baseline on both the diversity and
expressiveness of prediction results, indicating the effectiveness
of introducing DDPM to the task of speech prosody prediction.

2. Methodology
As shown in Figure 1, we incorporate the proposed DDPM-
based prosody predictor with a pre-trained TTS backbone based
on FastSpeech2 to construct an expressive TTS system. Fol-
lowing FastSpeech2, we encode speech prosody into a 3-
dimensional feature of pitch, energy, and duration.

2.1. Text-to-speech backbone

The backbone of the proposed expressive TTS system is an
adapted FastSpeech2 with a modified variance adaptor. The
phoneme embedding, encoder, and mel spectrogram decoder
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Figure 1: The overall architecture of the expressive TTS system with the proposed DDPM-based prosody predictor

modules are the same as those in FastSpeech2. While for the
variance adaptor, instead of applying frame-wise pitch and en-
ergy features, we use phoneme-wise pitch and energy to im-
prove training stability. The phoneme-wise pitch, energy, and
duration values are provided by the proposed DDPM-based
prosody predictor, as displayed in Figure 1a. Similar to the
original setting, the given pitch and energy are first quantized
and mapped to embedding vectors via a codebook, then added
to the phoneme-wise output of the encoder as a stylized input
condition, which is repeated with a length regulator (LR) mod-
ule according to the given phoneme durations and fed to the mel
spectrogram decoder to generate the final mel spectrogram.

2.2. DDPM-based prosody predictor

2.2.1. Preliminary knowledge on DDPM

DDPM is a generative model built upon a forward process that
is fixed to a Markov chain that diffuses data x0 into white noise,
and a reverse process that samples x0 from white noise via an-
other Markov chain with learned Gaussian transitions.

Practically, the former process diffuses the xt−1 with a
small Gaussian noise to obtain xt at each diffusion step t ∈
[1, T ] according to the fixed variance schedule β1, . . . , βT :

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI)

After T steps, x0 is transformed into xT .
The reverse process starts at p(xT ) = N (xT ;0, I), and is

approximated via a neural denoiser θ as:

pθ(xt−1|xt) := N (xt−1;µθ(xt, t), σ
2
t I)

where σ2 =
1−αt−1

1−αt
βt, with αt := 1−βt and α :=

∏t
s=1 αs.

The parameters θ of the denoiser are trained via minimizing a
variational bound of the negative log-likelihood:

E[− log pθ(x0)] ≤ Eq

[
− log

pθ(x0:T )

q(x1:T |x0)

]

which is eventually simplified as the following variant by the
reparameterizations in Formula 1 and 2 where ϵ ∼ N (0, I).

Lsimple(θ) := Et,x0,ϵ

[
∥ϵ− ϵθ(

√
αtx0 +

√
1− αtϵ, t)∥2

]

xt(x0, ϵ) =
√
αtx0 +

√
1− αtϵ (1)

µθ(xt, t) =
1√
αt

(
xt − βt√

1− αt

ϵθ(xt, t)

)
(2)

The complete proof of these formulas can be found in [13].

2.2.2. DDPM-based prosody predictor

The proposed prosody predictor is a DDPM modeled on 3-
dimensional prosody features x0, which consists of phoneme-
wise pitch, energy, and duration, respectively. We employ non-
causal WaveNet as the underlying denoiser network θ [15, 19].

As shown in Figure 1b, during each training step of the
prosody predictor, we first take the text information generated
by the FastSpeech2 encoder as prediction condition c. Note that
the parameters of the original FastSpeech2 modules are frozen
the whole time to keep the TTS backbone intact. Then we uni-
formly sample the Markov chain time step t from [1, T ], based
on which the pre-extracted ground truth (GT) phoneme prosody
features x0 are diffused into xt via the reparameterization in
Formula 1. Given condition c, t and input xt, the denoiser θ
outputs ϵθ(xt, c, t), and updates its parameters by the gradient
in Formula 3.

∇θ

∥∥ϵ− ϵθ(
√
αtx0 +

√
1− αtϵ, c, t)

∥∥2 (3)

The inference procedure of the prosody predictor is de-
picted in Figure 1c. Given text information c, we first sample
the denoise start xT ∼ N (0, I), then iteratively compute xt−1

based on xt according to Formula 4 for t = T, . . . , 1, where
z ∼ N (0, I) except for z = 0 when t = 1.

xt−1 =
1√
αt

(
xt − βt√

1− αt

ϵθ(xt, c, t)

)
+ σtz (4)
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Table 1: Overall performance comparison, including: (i) Mean Opinion Score (MOS) of speech expressiveness with 95% confidence
intervals; (ii) Jensen Shannon (JS) Divergence between the prosody distributions of the prediction and ground truth; (iii) Number of
network parameters in the prosody predictors.

Systems MOS (↑) JS Divergence (↓) #Params in
Pitch Energy Duration prosody predictor

FastSpeech2 with original prosody predictor 3.58± 0.07 0.199 0.056 0.119 1,185,027
FastSpeech2 with proposed prosody predictor 3.98± 0.08 0.085 0.055 0.056 738,499

FastSpeech2 with ground truth prosody 4.23± 0.07 - - - -
Ground truth audio (Reconstructed) 4.39± 0.06 - - - -

(a) Pitch (b) Energy (c) Duration

Figure 2: Distribution of the quantized prosody in predictions and ground truth for phoneme “ng”. Red rectangles highlight that
the baseline tends to avoid making aggressive predictions, resulting in over-smoothed distributions. (Orange lines correspond to the
baseline, blue lines correspond to the proposed method, green lines correspond to the ground truth distribution)

76.65% 13.22%10.12%

Proposed No Preference Baseline

Figure 3: AB preference test results

After looping for T times, the final prosody prediction x0 is
obtained. The x0 is subsequently sent to the modified vari-
ance adaptor in the TTS backbone and eventually guides the
mel spectrogram decoder to synthesize speech stylized by the
predicted prosody.

3. Experiments
3.1. Dataset and model details

We apply the proposed method to a private Mandarin audiobook
dataset with 28.23 hours of speech audio voiced by a profes-
sional male speaker, since there is few public Mandarin corpus
with diverse and expressive prosody variations, as well as sat-
isfying sound quality. We randomly sample 5% of the dataset
and reserve it for validation and testing, while the rest 95% is
used for training. All of the phoneme duration is extracted by a
pre-trained speech recognition model automatically. Based on
which, the phoneme-wise pitch and energy features are obtained
through averaging over frame-wise pitch and energy, where the
frame-wise pitch is extracted via Crepe [20], and the frame-
wise energy is computed as the L2-norm of the amplitude of
each short-time Fourier transform frame. To boost the net-
work’s training, the prosody predictor’s practical duration target
is computed by taking the log scale of the raw phoneme dura-
tion.

The encoder and mel spectrogram decoder of the TTS back-
bone are made up of 4 and 6 Feed-Forward Transformer blocks

[21] with channel width 256, respectively. The variance adaptor
quantizes input pitch and energy values into 128 bins. The pro-
posed prosody predictor is built upon a DDPM with T = 500
and linear noise schedule β1:T = {10−4, . . . , 0.06}, and the
underlying non-causal WaveNet θ consists of 10 stacked resid-
ual layers with channel width 64. We also train the origi-
nal prosody predictors in FastSpeech2 with mean squared er-
ror (MSE) as the deterministic baseline model for comparison,
which contains 60.5% more network parameters, as shown in
Table 1. The baseline predictors are trained along with the Fast-
Speech2 backbone with batch size 16 on an Nvidia GeForce
RTX 2080Ti for 900,000 steps. The proposed model is trained
under the same setting for the same number of steps, which took
approximately 31 hours. The training and evaluation of both
methods are performed in a single run, without grid searching
for hyperparameters and random seeds. A pre-trained HiFi-
GAN [4] is utilized as the backend for waveform reconstruc-
tion.

3.2. Expressiveness

To evaluate the expressiveness of the speech synthesized by the
proposed method, we conduct a Mean Opinion Score (MOS)
test and an AB preference test on 22 utterances from the test
set, with 22 native speakers serving as subjects. In the MOS
test, each subject is asked to rate the given audios on a scale
of 1 to 5 regarding their expressiveness. As shown in Table 1,
the proposed method reaches higher scores than the baseline. In
the AB test, each subject is asked to choose the more expressive
audio of 2 anonymous ones synthesized by the proposed method
and baseline. As shown in Figure 3, the proposed method is
favored with an overwhelming 76.65% of the preference, while
the baseline only receives 13.22%.

The prevailing subjective test results on expressiveness are
consistent with the statistics of the prosody prediction distribu-
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(a) Pitch (b) Energy (c) Duration

Figure 4: Detailed values of JS Divergence between the predicted and ground truth prosody over each phoneme. Higher bars stand for
larger divergence, indicating worse diversity of the prediction. (Orange bars correspond to the baseline, blue bars correspond to the
proposed method)

Figure 5: Prosody prediction results generated by the proposed
method in different runs on the same input text, stylizing the
synthesized audio with diverse prosody.

tion. As plotted in Figure 2, using the phoneme “ng” as an
example, the predictions from the proposed method accumulate
to a distribution closer to ground truth distribution. In contrast,
the baseline tends to make over-smoothed predictions, resulting
in squeezed distributions. From our empirical study, the ground
truth distributions of the pitch and duration are more complex
than that of the energy, which appears to have low variance in
a narrow bell curve. This explains the defective performance of
the baseline, as it is limited in unimodal predictions.

3.3. Diversity

To reveal the diversity of the predicted prosody, we compute
the Jensen Shannon (JS) divergence between the distributions of
the quantized prosody in predictions and ground truth to mea-
sure how well the predictions fit into the ground truth distribu-
tion [22]. Results in Table 1 show that the proposed prosody
predictor achieves lower JS divergence on all of the 3 prosody
features, indicating a better diversity of prediction results. We

also plot out the JS divergence values over each phoneme in
Figure 4 to observe the characteristics of prediction diversity,
which turns out to match the observation in Figure 2. For pitch
and duration prediction, the proposed method produces better
results on all the phonemes. For energy prediction, there is no
significant difference on most phonemes except a few voiceless
sounds like “q”, “x” and “sh”.

We can also directly demonstrate the diversity of the pro-
posed method by sampling multiple times on the same text.
As shown in Figure 5, the predicted prosody varies in different
samples, resulting in diverse synthesized spectrograms. Mean-
while, the predicted prosody is still stably in coherence with the
text, as reflected in Table 1 where no significant expansion of
confidence interval in the MOS result is observed.

4. Conclusion and Discussion
In this work, we propose a DDPM-based speech prosody pre-
dictor and attach it to a FastSpeech2-based TTS backbone to
form an expressive TTS system. Compared with traditional de-
terministic predictors, the proposed DDPM-based method en-
hances the expressiveness of synthesized speech and brings no-
ticeable improvements to the diversity of the predicted prosody,
which is still in coherence with the given text. Please refer to
our demo website1 for listening to samples.

Nevertheless, the iterative sampling process of the proposed
method brings increased latency to the TTS system. We con-
duct a computation cost test on an Nvidia GeForce RTX 2080Ti,
and find that the average real-time factor (RTF) of the proposed
DDPM-based prosody predictor with full 500 denoising steps is
0.47, while the RTF of the original FastSpeech2 variance pre-
dictor is 0.31 × 10−3. Although the DDPM-based approach
achieves real-time inference, it is slowed down by the iterative
sampling process. In the future, we will consider introducing
fast sampling techniques that are able to produce results within
a couple of denoising steps, as well as modifying the underly-
ing DDPM with novel improvements that emerge in the latest
diffusion models [23, 24].
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