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Abstract
Many intent understanding studies neglect the impact of par-
alinguistic information, resulting in misunderstandings during
speech interactions, particularly when different intentions are
conveyed by the same text with varying paralinguistic infor-
mation. To address this issue, this study developed a Chinese
multimodal spoken language intention understanding dataset
that features different spoken intentions for identical texts. Our
proposed attention-based BiLSTM model integrates textual and
acoustic features and introduces an acoustic information gate
mechanism to supplement or correct linguistic intention with
paralinguistic intention. Experimental results demonstrate that
our multimodal integration model improves intent discrimina-
tion accuracy by 11.0% compared to models that incorporate
only linguistic information. The result highlights the effective-
ness of our proposed model for intent discrimination, particu-
larly in cases with identical text but varying intentions.
Index Terms: spoken language intent understanding, human-
computer interaction, multimodal information integration

1. Introduction
In the last decade, with the development of artificial intelligence
and the popularization of smart devices, human-computer in-
telligent dialogue technology has received extensive attention.
Spoken intent understanding is the core module of the whole
dialogue system, so it is a key issue to accurately obtain the
comprehensive intent information transmitted by the speaker,
including linguistic intents carried by textual information and
paralinguistic intents carried by acoustic information.

Previous studies have shown that paralinguistic informa-
tion, such as the speaker’s emotion, attitude, and confidence,
plays an important role in intent understanding [1, 2]. Recently,
some researchers directly use the acoustic modality for inten-
tion understanding [3, 4], while a majority of studies use the text
modality to discriminate linguistic intention. For instance, in
task-domain dialogue research, relying solely on textual infor-
mation has been shown to be effective in decoding the speaker’s
intent [5, 6, 7, 8, 9]. Furthermore, pre-trained models have
gained significant attention and demonstrated remarkable per-
formance in the field of intent recognition [10, 11, 12].

However, in some ambiguous cases, it is difficult to get the
true intent of the speaker through only textual information, even
with the most advanced pre-training language models. For ex-
ample, as shown in Table 1, for the identical Chinese text ”我
一点也不生气”, the intent is completely different when using
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Table 1: Examples of the same Chinese text with different user
intents in the CMSLIU dataset.

Input message Intent
E.g. 1: 这首歌真好听
Case 1: This song sounds wonderful! Praise
Case 2: This song sounds terrible! Irony
E.g. 2: 我一点也不生气
Case 1: I am not angry at all. Literal
Case 2: I am very angry. Irony
E.g. 3: 你会不会开车
Case 1: Can you drive? Query
Case 2: Your car skills are too bad. Antipathy

Figure 1: Examples about the influence of paralinguistic infor-
mation on intent understanding. The user expresses the same
Chinese text with different prosodies (Case 1 is literal and case
2 is irony). Thus the responses of the speech device should be
different if it understands the user’s true intention.

different prosodies to pronounce it. As demonstrated in case
2 of Figure 1, the linguistic intent conveyed by the textual in-
formation conflicts with the paralinguistic intent conveyed by
the acoustic information. Likewise, this phenomenon is preva-
lent in English, where the absence of paralinguistic information
during human-computer interaction can impede the computer’s
ability to apprehend genuine human intention. Therefore, the
challenge of this study is to get the true intention when the
modalities have conflicting information.

To address this issue, we intend to integrate text and acous-
tic information together to decode the true intention. Consid-
ering the lack of datasets that include different intentions em-
bedded in the same text, in this work, we first built a Chinese
multimodal dataset including audio, text, and electroencephalo-
gram (EEG) signals [13] (the EEG signal is not used in this
study) when subjects transmitted different intents using identi-
cal text. Afterward, we proposed a multimodal information fu-
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Figure 2: The overview of the proposed intention discrimination model based on multimodal information integration.

sion model using an attention-based Bidirectional Long Short-
Term Memory (BiLSTM) network to integrate features related
to linguistic intent from text sequence, and features from audio
signal related to paralinguistic intent to get the speaker’s com-
prehensive intent.

The main contributions of this work are as follows:
1) We designed and collected the Chinese spoken language

intent understanding dataset to simulate the situation in a real
conversation in which speakers express different intentions us-
ing identical text.

2) We develop a multimodal information fusion model for
intent discrimination, and introduce a gate mechanism to learn
the relationship between linguistic intents and paralinguistic in-
tents, so as to achieve the supplement or correction of paralin-
guistic intents on linguistic intents.

2. Dataset construction
2.1. Dataset introduction

In this work, we collected the first Chinese multimodal dataset
CMSLIU1 that considered situations of the same text embedded
by different intentions. The CMSLIU dataset has 5520 audio-
text utterances in total, including task-oriented utterances, such
as weather queries and booking tickets, and the open domain
Chit-Chat. It is annotated with six intent labels including Query,
Directive, Irony, Praise, Literal and Antipathy. It is also marked
with three emotion labels, namely, positive, neutral, and nega-
tive. Examples of the different intentions embedded in the same
Chinese text are shown in Table 1.

2.2. Data collection

Thirty native Mandarin speakers (20-28 years old) participated
in data collection. The collection was performed in a sound-
proof, electromagnetically shielded room. During the task,
the text presentation and audio collection were conducted with
Psychtoolbox-3 (www.psychtoolbox.org) running in MATLAB
R2019a. The experiment included 15 sessions and 184 sen-
tences. Each session started with a 10-s silent period, followed
by a video clip lasting about 3 to 5 minutes to induce positive,
neutral, or negative emotions of the subjects. Then, a set of

1https://drive.google.com/drive/folders/1w76HxNj4zWK3snpdjlr9-
aDNRddOIrlD?usp=sharing

Table 2: Statistics of CMSLIU, ATIS, and Snips datasets.

CMSLIU ATIS Snips
# Intents 6 21 7
# Slots 17 120 72
# Emotion 3 / /
Training set size 4,380 4,478 13,084
Testing set size 1,140 893 700

sentence texts with the same emotional tags were sequentially
presented on a screen for the participants to read out with pre-
defined intentions. The audio recording started with a button
press of ’S’ and ended with a button press of ’E’. The speech
signals were recorded using an electric condenser microphone
(iCON Ultra 4) at a sample rate of 44100 Hz. For more details
about the audio data corresponding to the Chinese texts given in
Table 1 and more details about data collection, please visit the
CMSLIU dataset URL1.

In addition, to verify the generalization of the proposed
method, we used another two widely used English datasets in
intent understanding research, that is, the ATIS (Airline Travel
Information Systems) [14] and Snips2. They mainly focus on
task domain dialogues. The statistic descriptions of the three
datasets are shown in Table 2.

3. Proposed Method
An overview of the proposed multimodal information fusion
model is illustrated in Figure 2. It includes a feature extrac-
tion module, a multimodal information encoder, and a decoder
for intent discrimination.

3.1. Feature extraction

We extracted both textual features and acoustic features for in-
tention discrimination. Previous research has demonstrated that
RoBERTa [15], which is optimized from BERT [16] with larger
training data and longer training time, generates more accurate
Chinese text embeddings in single Chinese text intent recogni-
tion tasks. Therefore, for text modality, we apply the RoBERTa
model with Whole Word Masking to encode each Chinese char-

2https://github.com/snipsco/nlu-benchmark/tree/master/2017-06-
custom-intent-engines
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acter into a high-dimensional vector to represent the textual con-
tent.

For the acoustic signal, we have also tried the speech-
based pre-training models such as wav2vec2.0 [17], HuBERT
[18] and Conformer [19], but those pre-training models did
not achieve good performance. The reason may be that these
pre-training models were trained with data that have consistent
information across modalities, while our study deal with the
data that have conflicting information across modalities. There-
fore, instead of using the pre-training model, we introduce prior
knowledge to construct distributed acoustic features. For ex-
ample, the longer duration of the ”真 (really)” in ”这首歌真
好听 (This song sounds rea∼lly good)”, is more likely to ex-
press irony intent, while the shorter the duration, is more likely
to express praise intent. Moreover, F0 tends to decline when
people express irony intention. In sum, all these advantages are
not available in the pre-training model. As a result, we use a
handcrafted feature extraction method to get effective paralin-
guistic information from speech signals [20]. The details about
acoustic feature extraction are described as follows:

a) F0 and Energy: The paralinguistic information in speech,
i.e. the speaker’s emotion and confidence, is commonly de-
scribed in terms of prosody features such as F0 and energy. In
this work, the standard Root Mean Square Energy (RMSE) is
employed to calculate speech energy using:

E =

√√√√ 1

n

n∑

i=1

y[i]2 (1)

The RMSE is computed frame by frame, and we take the mean
and standard deviations as features.

b) Pause: We adopt this feature to represent the ”silent”
part of the audio signal. This value is closely related to our
confidence as well as emotion when we talk. The pause is given
by:

Pause = Pr(y[n]<s) (2)

where s represents the suitable threshold, which is approxi-
mately equal to 0.4 * RMSE.

c) Harmonics: The median-based filter described in [21] is
used to calculate harmonics. For a given input vector x(n), we
can create a median filter for a given window size l:

y[n] = med(x[n− k : n+ k], k = (l − 1)/2) (3)

where l is odd and y[n] is the output of median filter. In addition,
the median is obtained as the average of the two values in the
middle of the sorted list when l is an even number. Then median
filtering is performed on the hth frequency slice Sh of a given
spectrogram S, so as to obtain harmonic-enhanced spectrogram
frequency slice Hh :

Hh = M(Sh, lharm) (4)

where M is the median filter, and lharm is the length of the
harmonic filter.

d) Central moments: At last, we “summarize” the input in-
formation using the average and standard deviation of the audio
signal amplitude.

3.2. Encoder for textual and acoustic information

For textual information, word embedding is carried out by the
Chinese pre-training RoBERTa model first. Next, a convolution
layer performs a discrete convolution on the input matrix to ex-
tract sentence features [22, 23], where each row of the matrix

is the word embedding of the corresponding word. Then, the
newly generated matrix is input into the BiLSTM [24] model.
And the final hidden state hj at time step j is a concatenation of
forward hidden state

−→
hj and backward hidden state

←−
hj .

For acoustic information, we first perform feature extrac-
tion on the input audio signal, and then the extracted feature sets
are fed into an attention-based BiLSTM model. For each hidden
state hj , we compute the intent context vector CAI based on au-
dio as the weighted sum of LSTM’s hidden states h1, · · · ,hL,
by the learned attention weights αA

j
I :

CAI =
L∑

j=1

αA
j

Ihj (5)

where the acoustic attention weights are computed as below:

αA
j

I =
exp(ej)∑L

m=1 exp(em)
(6)

em = σ(WAI
he hm) (7)

Where σ is the activation function, and WAI
he is the weight ma-

trix of a feed-forward neural network. Similarly, the intent con-
text vector CT I based on text can also be computed as CAI .

In this study, we additionally introduced a gating mecha-
nism for achieving the supplement or correction effect of par-
alinguistic intents carried by acoustic information for linguistic
intents carried by textual information.

g = v · tanh(CT I +W · CAI) (8)

where CT I and CAI represent the context vectors of linguistic
intent and paralinguistic intent respectively. Here, v and W are
trainable vector and matrix respectively. Significantly, g can be
seen as a weighted feature of the context vector CT I and CAI .

3.3. Decoder and training for intent discrimination

We use a decoder to perform intent discrimination, which can
be denoted as below:

yI = softmax(W I
hy(h

T
L + hA

L · g)) (9)

where W I
hy is weight matrix.hT

L and hA
L represents the last hid-

den state of the text and audio BiLSTM model, respectively.
Finally, the intent discrimination objection is formulated as:

L = −
T∑

j=1

ŷI
j log(y

I
j ) (10)

where ŷI
j is the gold intent label.

4. Experiments
4.1. Experiment setting

In this study, the CMSLIU dataset is split into the training set
and testing set, which contains 4,380 and 1,140 text-audio sam-
ples, separately. For text modality, to justify the generalization
of the proposed model, we also implemented experiments on
ATIS and Snips benchmark datasets. For audio modality, we
down-sample the audio samples to 8 kHz first, and then the fea-
ture sets are extracted by librosa3 toolkit.

3https://github.com/librosa/librosa
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Table 3: Comparisons of intent discrimination accuracy (%) on
three datasets among different models (where T is for Text and
A is for Acoustic).

Model Year ATIS Snips CMSLIU
LIDSNet [25] 2021 96.0 98.0 50.5
Stack-Prop [26] 2019 96.9 98.0 52.3
DCA-Net [5] 2021 97.7 98.8 52.4
Bilinear [27] 2022 98.2 98.9 52.9
Our ( T ) 98.0 98.9 53.1
Our ( A ) / / 59.2
Our ( T+A ) / / 60.6
Our ( T+A+Gate ) / / 64.1

In all experiments, the convolution layer used one 3×3 filter
with the SELU activation function. The size of hidden units and
maximum training epochs are set as 128 and 50, respectively.
The Adam optimizer is applied to optimize the parameters in
our model. The initial learning rate is 10−3, and the learning
rate is set to 5 × 10−4 when the training accuracy is greater
than 60% but less than 80%. The learning rate is set to 10−4

while training accuracy exceeds 80%. Following Qin et al. [5],
we use accuracy to evaluate the intent recognition performance.

4.2. Results and analysis

Table 3 shows that the six intents discrimination accuracy of our
proposed multimodal information integration model on the CM-
SLIU dataset reached 64.1%. To verify the supplement or cor-
rection of paralinguistic intent carried by acoustic information
on linguistic intent transmitted by textual information, we im-
plemented ablation experiments on the CMSLIU dataset. The
confusion matrix of the ablation experiment is given in Figure
3. And the accuracy of intent discrimination decreases to 53.1%
when we input only the textual information. We also conducted
experiments on ATIS and Snips datasets to exclude the influ-
ence of models and datasets as shown in Table 3, where the
compared baselines for intent recognition include the state-of-
the-art (SOTA) models LIDSNet [25], Stack-Propagation [26],
DCA-Net [5], and Bilinear attention [27].

Based on the experimental analysis, we have the following
findings:

1) The proposed model achieves satisfactory performance
on all three datasets when only textual information is used as
input. It should be noted that the goal of this study is not to
achieve SOTA performance on intent recognition in the ATIS
and Snips datasets, but rather to validate that our proposed
model performs competitively on text-based datasets compared
to other mainstream models. Although the previous SOTA mod-
els have achieved good intent recognition results on ATIS and
Snips datasets, the intent discrimination accuracy of each model
has decreased significantly on the CMSLIU dataset. In fact, this
phenomenon is quite normal since the samples in the CMSLIU
dataset with the same text but different intent labels, which can-
not be correctly discriminated by text-based linguistic informa-
tion alone. That is, the textual information input into the model
is exactly identical, but corresponds to different intent labels. In
such cases, even the most ideal text-based model cannot work
in the classification task of the CMSLIU dataset.

2) Comparing Figure 3 (A) with (B), it is found that the
textual-based method can achieve high accuracy in identifying
intentions that are insensitive to paralinguistic information, such
as Query and Directive. However, for the other four intentions,

Figure 3: The confusion matrix of (A) Text-only (B) Acoustic-
only (C) Text + Acoustic + Gate (D) Text + Acoustic.

the accuracy is significantly lower than that audio-based method
due to the lack of paralinguistic information.

3) As shown in Figure 3 (A) and (C), after fusing acous-
tic and textual information, the overall intent recognition accu-
racy of our framework improves by 11.0%, especially for Irony,
Praise and Antipathy. The reason may be that the paralinguistic
information contained in the audio modulates the textual infor-
mation through the gate mechanism to distinguish which inten-
tion the speaker expresses. In contrast, the intention discrimina-
tion accuracy is significantly declined when the gating module
is removed and the features of the two modalities are directly
concatenated, as shown in Figure 3 (D), which proves the effec-
tiveness of the gating mechanism.

5. Conclusions
In this work, we proposed a novel attention-based BiLSTM
multimodal information fusion model for decoding comprehen-
sive intent information containing paralinguistic intents carried
by acoustic information and linguistic intents carried by textual
information.

First, we constructed a Chinese spoken language intention
understanding dataset and then proposed a method to fuse the
textual and acoustic information together for intent discrimina-
tion, in which the acoustic information gate mechanism was in-
troduced to supplement or correct linguistic intention with the
paralinguistic intention. The result highlights that our proposed
model can effectively utilize paralinguistic information in in-
tent discrimination, particularly in cases where the identical text
could not provide any useful information to distinguish varying
intentions.

In future work, we will additionally fuse EEG features
[28, 29] to obtain the intent representations in the brain so as
to further improve the intent discrimination performance.
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