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Abstract
Natural Language Understanding (NLU) systems such as chat-
bots or virtual assistants have seen a significant rise in popularity
in recent times, thanks to availability of large volumes of user
data. However, typical user data collected for training such
models may suffer from sampling biases due to a variety of fac-
tors. In this paper, we study the impact of bias in the training
data for intent classification task, a core component of NLU
systems. We experiment with three kinds of data bias settings:
(i) random down-sampling, (ii) class-dependent bias, and (iii)
class-independent bias injection. For each setting, we report the
loss in model performance and survey strategies to mitigate the
loss from two families of methods: (i) semi-supervised learning
(SSL), and (ii) synthetic data generation. Overall, we find that
while both methods perform well with random down-sampling,
synthetic data generation out-performs SSL when only biased
training data is available.

1. Introduction
Data collection is an integral part of training any Machine Learn-
ing (ML) system and the data collection protocol can signifi-
cantly impact the performance of the ML model. While access
to an arguably unrestricted data source for unbiased data collec-
tion in large volumes is desirable, it may not always be feasible.
For instance, under certain conditions, data collection protocols
may dictate separate data collection per label of interest: while
building a commercial Natural Language understanding (NLU)
model, the developer may start by sourcing data from a particular
group of end users or annotators to generate requests related to
playing music first, and a later time source data from a separate
group for a new feature (such as querying for weather). This
change in user population can induce subtle changes in the data
subsets corresponding to the two intent labels PlayMusic and
GetWeather.

Another unexpected source of bias is user privacy, due to
which gathering labeled data in large volumes becomes chal-
lenging leading to data collection being restricted to a biased
sub-sample of users. For example, while building the NLU
system, due to privacy concerns the developers are sometimes
constrained to explicitly get user approval to have their data
stored/labeled for downstream model use; in this scenario, it is
likely that only a small section of user population would donate
their data, leading to bias (say, in intent distributions) in the
retained training dataset.

In this work, we study the impact of such biases in the intent
classification sub-component of natural language understand-
ing, introduced during the dataset collection process, and survey
the efficacy of a number of mitigation strategies. We simulate
settings that mimic different kinds of biases that can be intro-

duced during data collection. We start with uniformly random
down-sampling, and subsequently introduce biases under data
collection protocols that either collect data for supported labels
independently or together. Furthermore, we simulate these bi-
ases in a low data volume setup when only tens or hundreds
of data-points are available for each class. We focus on biases
in low data settings as the impact of biases is expected to be
more pronounced there. In addition, low availability of data is an
increasingly realistic scenario in building industrial ML systems
given emerging privacy considerations [1]. Furthermore, we
survey the benefits of a variety of techniques from two broad
data augmentation strategies: (i) semi-supervised learning as-
suming availability of unlabeled data, and (ii) synthetic data
generation. We assess their impact in recovering degradations
in model performance arising from the low volume and biased
training data.

2. Related Work
The quality and real-world utility of datasets used to train and
evaluate machine learning models is highly sensitive to biases
in the processes used to create them [1]. Bias can appear in
all parts of the dataset-creation pipeline, including the curation
methods used to select which examples to include in a dataset [2,
3], the design of the annotation guidelines and prompts [4],
the subjective judgements made by individual annotators [5]
and, the decisions about how to split a dataset into training,
validation, and test sets [2]. Models trained on these biased
datasets may then learn to exploit dataset-specific artifacts [6, 7],
achieving strong performance on similarly-biased test sets, but
not generalizing well to other examples from the task’s real-
world data distribution.

In recent years, there have been many related efforts to
mitigate the effects of these hidden dataset biases through im-
proved dataset creation and annotation procedures [8–10], data
augmentation methods [11, 12], and bias-aware learning algo-
rithms [13–15]. However, few prior studies have examined this
problem in the NLU domain. In this work, we address this gap
by surveying a number of methods to create biased subsamples
in existing, publicly available datasets. We use these methods
to 1) create several benchmark text classification datasets with
different types of bias and, 2) evaluate the performance of a
variety of techniques to mitigate these biases.

3. Bias simulations
Depending on the underlying factors involved in the dataset
collection scenario, a variety of biases may creep into the ob-
tained data. We discuss three such bias conditions below, with
illustrations shown in Figure 1.
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3.1. Random down-sampling

In this scenario, we assume availability of data from the real
world distribution. This scenario is likely, for example, when
an ML practitioner has access to the process governing data
generation, but they are constrained to sample a small portion
of the data. We randomly downsample our available datasets
to a fraction of its original size to simulate this scenario. This
method is expected to provide a smaller number of datapoints,
but may not introduce any bias in the sampled data.

3.2. Class-dependent bias injection

In many applications, practitioners are constrained to gather
data per class. For example, in an industrial setting, one may
launch ML models with a pre-defined class support (e.g. an
intent classification model that classifies utterances into Play-
MusicIntent and GetWeatherIntent). To launch models with the
given class support, the practitioner may be required to collect
representative utterances per class (by requesting paid users to
make either requests to play music or get weather to get coverage
for PlayMusicIntent and GetWeatherIntent, respectively). The
distribution of such utterances within each class, however, may
not conform to the real-world distribution.

In our to simulate this scenario, given a class, we obtain K
seed datapoints from amongst the datapoints belonging to that
class. Given these seed datapoints, we select utterances near
them (where distance is defined on an appropriate embedding
space) to obtain the undersampled data. Following the example
above, each seed can be seen as a prototype of requests a user
makes and the nearby utterances can be provided by the same
user. We propose multiple ways of selecting the seed datapoints.
In our experiments, we use the following settings: (i) K = 1,
seed close to class centroid, (ii) K = 1, seed away from class
centroid, (iii) K > 1 seeds away from class centroid and, (iv)
K > 1, seeds randomly chosen. The class centroid is computed
based on all the available datapoins for the class at hand, as
defined on the chosen embedding space.

3.3. Class-independent bias injection

In this scenario, the practitioner first collects data for the pre-
defined class support, gets them annotated and then trains a
model on the collected data. However, they are not able to
collect data as per the real world distribution. For example, given
the full class support, the practitioners may only be able to get
representative datapoints from a set of users who agree to donate
their data. To inject such a bias, we obtain K seed datapoints
and select utterances proximal to the seed datapoint without
factoring in the class assignments. This leads to semantically
similar utterances finding prevalence in the under-sampled data,
without considering the class.

4. Experiments
4.1. Datasets

We use three intent classification datasets for our experiments:
i) The ATIS Intent Classification Dataset [16] dataset, ii) The
Semantic Parsing for Task Oriented Dialog using Hierarchical
Representations (TOP) [17] dataset, iii) The SNIPS Natural
Language Understanding benchmark [18]. For each of these
datasets, we created biased subsets using the sampling scenarios
described in Section 3, and train intent classifiers on each of
these sets. We further experiment with different degrees of data
reduction in each of our biased sampling scenarios, with the

Figure 1: Given that data in a chosen class is shown using the
blue ellipse, (a) shows sampling with a single seed (K = 1)
with the seed selected away from the class centroid, (b) shows
sampling with multiple seeds (K > 1) with seeds away from
centroid, (c) shows sampling with several randomly selected
seeds, and (d) shows sampling with seeds selected randomly
irrespective of the class (green ellipse denotes a class different
from the blue one).

constraint that at least one data point is available per class in
each simulation. This is important as unconstrained severe under-
sampling may lead to a reduced class support, as datapoints
from some classes may not be sampled. In our experiments, we
reduced the data size to to 1%/5%/10%, of its original volume
and report results on each of these. We continue selecting nearest
utterances to the selected seed utterances until we reach the target
proportion.

4.2. Implementation details

For each scenario described in Section 3, we operate in an utter-
ance embedding space based on the smooth inverse frequency
(SIF) method [19]. SIF has been shown to be a strong, yet
simple method to obtain sentence embeddings. We select seed
utterances in the SIF embeddings space and select proximal ut-
terances based on L2 norm. We also note that in the real world
the process for biased data generation is unlikely to be avail-
able. Therefore, we do not use SIF based embeddings in any
of our subsequent mitigation strategies to counter the effect of
the biased data samples. We fine-tune a BERT base model (with
∼110M parameters) on the available labeled data for all our
classification tasks. We create 10 versions of datasets under each
setting and present average performance across them. Results
for our baselines are shown in Table 1.

4.3. Observations

1. All of the down-sampling regimes lead to some form of
performance degradation, suggesting the need for suitable mit-
igation strategies.
2. While the random down-sampling setting had the least
degradation in TOP and SNIPS, it degrades the most in
ATIS. We expected random down-sampling to show the least
degradation compared to the full data baseline, since it preserves
class distributions across data samples. However, this is not the
case in ATIS dataset, especially in the setting sampled down to
1% of its size. This is likely due to the considerably smaller size
of this dataset, where severe under-sampling (to 1%) leaves room
for just 1-2 samples per class, as shown in Table 2. While this
result is expected, it has important implications for the few-shot
learning scenarios, in which sampling data to match the true
distribution becomes impossible. Such scenarios are common in
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Table 1: Baseline results, trained with 1%/5%/10% of labelled data
Dataset ATIS TOP SNIPS ATIS TOP SNIPS ATIS TOP SNIPS
Full data 97.94 94.16 98.86 - -
Data proportion 1% 5% 10%
Random down-sampling 66.52 83.50 85.81 85.81 90.43 90.08 88.58 98.08 96.69
Class dependent bias injection
(K = 1 close to centroid) 70.59 73.45 68.51 80.49 80.47 90.30 83.68 82.85 92.35
(K = 1 away from centroid) 72.30 72.22 75.22 81.47 79.15 89.40 87.70 82.95 92.85
(K > 1 away from centroid) 80.77 77.65 80.77 86.49 84.93 90.44 89.25 87.16 93.92
(K > 1 randomly chosen) 73.69 74.39 75.04 86.00 83.82 89.61 89.53 87.64 94.28
Class independent bias injection
(K > 1) 72.21 72.76 34.40 80.84 85.88 76.80 85.55 89.30 94.12

Table 2: Number of utts. selected per intent in ATIS
Intent/Ratio 10% 1% 10% 1%
Intent/Ratio random sampling Class independent
Intent/Ratio bias injection
abbreviation 11 2 12 3
aircraft 8 1 9 2
airfare 41 5 42 6
airline 15 2 16 3
airport 2 1 3 2
capacity 2 1 3 2

real-world uses of NLU systems, where very limited data may
be available when new classes (new intents) are introduced. In
particular, gathering biased data per-class yields more samples
for under-represented classes (e.g. capacity/distance), leading to
better accuracy in a few-shot setting.
3. (K > 1 away from centroid) performs the best in biased
settings. We observe that gathering diverse set of data per-
class that is distant from class centroid yield the most value in
terms of determining class boundaries. Datapoints away from
centroid are more likely to be close to the decision boundary and
data sampling methods such as active learning rely on a similar
heuristic to gather valuable annotated data.
4. The class-independent bias injection setting (K > 1)
shows severe under-performance for SNIPS. We observe an
average performance (over 10 runs) of 34.4% in the stated set-
ting in SNIPS when dealing with 1% data, but the performance
is considerably better when using 5% or 10% of the data. To
further examine this, we list the number of datapoints per class
from the class independent bias injection experiment in Table 3
(sampled from one of the 10 runs). From this table, we can see
that severe under-sampling in SNIPS leads to a skew in the train-
ing data with intents like GetWeather and SearchScreeningEvent
observing far fewer datapoints compared to the 10% and 5%
experiments. We observe that these intents, while frequent in the
overall population, are tightly clustered in the embedding space
and if a seed is not chosen close to their cluster, they are likely
to be severely under-represented. In a real world setting, this
setting is analogous to a case where a very similar set of users
may provide most data for a frequent class, but they refrain from
donating their data.

5. Mitigation Strategies
To mitigate the performance degradation observed in the baseline
experiments earlier, we explored two broad categories of data
augmentation, as described below.

5.1. Semi-Supervised Learning (SSL)
In SSL, we assume availability of a large volume unlabeled
datapoints, which is frequently the case for many real world

Table 3: Number of utts. in each intent of SNIPS with class
independent biased sampling

Intent/Ratio 10% 5% 1%
AddToPlaylist 28 11 10
BookRestaurant 396 137 79
GetWeather 234 164 2
PlayMusic 50 20 1
RateBook 283 191 36
SearchCreativeWork 83 13 11
SearchScreeningEvent 290 147 1

applications. We describe two pseudo-labeling strategies below.
Self-learning based SSL: in this method, we train a seed

model on the available labeled data and pseudo-label the unla-
beled data with the seed model. For both seed and augmented
models, we use a BERT-based pre-trained model trained from
ConSERT [20] and fine-tune it on the labeled data.

Clustering-based SSL: in this approach we propagate la-
bels from the labeled datapoints to neighboring un-labeled dat-
apoints. Unlabeled utterances help learn the underlying cluster
distributions of the data while the labeled utterances assign la-
bels to these clusters. Similar to [21], we use the pre-trained
language model BERT to produce sentence embeddings for both
labeled and unlabeled datapoints. We use K-means clustering
with the number of clusters set to the number of known classes
[22]. We expect that each cluster represents a set of semantically
similar sentences. To ensure quality of the generated labels, we
only select the most confident clusters in our experiments and
label these using the labeled datapoints present in each cluster.
Following [23], we only retain “pure” clusters, defined as those
in which: (a) at least 1% of the datapoints in a given cluster need
to be labeled, and (b) the majority class amongst the labeled
datapoints needs to account for at least 80% of the labeled data-
points. Given such clusters, all unlabeled datapoints are assigned
the majority class and are then augmented to the labeled dataset
for subsequent training.

5.2. Synthetic Data Generation
In this setting, we assume that no unlabeled data is available and
instead focus on generating new data from the labeled data using
the following set of methods.

Easy Data Augmentation (EDA) [24] is a data augmenta-
tion technique which uses strategies such as synonym replace-
ment, random synonym insertion, random swap of two words
and random word deletion to synthesize new training examples.
It creates 9 new synthetic utterances for each labeled utterance
using these techniques. While the heuristic behind EDA is sim-
ple, it has shown to outperform several data generation baselines.

Back Translation (BT) [25] in BT, a machine translation
(MT) system is applied to translate text from the source lan-
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Table 4: Accuracy of models, trained with 1% of labelled data and augmented data from each method
Dataset: ATIS

Full data baseline 97.94
Baseline SSL Clustering EDA ICL_p5 ICL_p7 ICL_p9 BT

Random down-sampling 66.5 68.1 78.4 82.4 83.6 85.8 87.3 82.5
Class dependent bias injection:
(K = 1 close to centroid) 70.6 70.4 50.3 80.2 77.7 76.9 78.5 78.9
(K = 1 away from centroid) 72.3 72.8 46.8 78.7 79.1 80.9 83.7 75
(K > 1 away from centroid) 76.5 81.5 58.8 84 84.7 86.3 85 83.2
(K > 1 randomly chosen) 76.7 77.6 52.5 80.5 82.4 85.4 86.8 81
Class independent bias injection:
(K > 1) 72.2 73 72.5 78.6 81 85.9 86.6 79.9

Dataset: TOP
Full data baseline 94.16

Baseline SSL Clustering EDA ICL_p5 ICL_p7 ICL_p9 BT
Random down-sampling 83.5 83.8 83.8 86.9 84.5 84.6 84.4 87.5
Class dependent bias injection:
(K = 1 close to centroid) 73.5 74 59.3 75.7 67.2 69.9 73.8 75.4
(K = 1 away from centroid) 72.2 72.6 56.8 74.5 70.9 72.9 74.6 73.8
(K > 1 away from centroid) 77.3 78.1 69.4 80.6 73.2 75.6 78.5 78.9
(K > 1 randomly chosen) 74.9 77.8 63.3 77.8 73 76 79.4 80.1
Class independent bias injection:
(K > 1) 72.8 73.4 72.1 76 77.7 76.9 77.6 78.1

Dataset: SNIPS
Full data baseline 98.86

Baseline SSL Clustering EDA ICL_p5 ICL_p7 ICL_p9 BT
Random down-sampling 85.8 88.5 94 91.8 94.1 94.9 94.2 93.8
Class dependent bias injection:
(K = 1 close to centroid) 68.5 71.2 86.1 79.8 82.1 85.9 89.7 87.2
(K = 1 away from centroid) 75.2 76.9 83 80.5 81.7 86.9 90.6 85.1
(K > 1 away from centroid) 75.2 82.5 88 87.2 87.1 90.9 92 91
(K > 1 randomly chosen) 79.3 82.4 88.2 84.4 90 89.7 93.3 91.8
Class independent bias injection:
(K > 1) 34.4 33.9 73.5 47 56.1 69 69.5 57.4

guage to a target pivot language, then back again. By sampling
from the N-best hypotheses in both directions, BT can produce
a large number of paraphrases. We fine-tune a 5B parameter
seq2seq model [26] on WMT 2014 data [27], using a single
model for en→fr and fr→en, with instruction prompts to control
both language directions: “Translate to French:” and “Translate
to English:” respectively. We decode with beam search using
M=10 forward and N=10 backward translations, to produce
up to 100 variations of each original sentence. After heuristic
cleaning (removing invalid punctuation like “!” and “?.”) and
de-deduplication, the average number of outputs per input was
41 for ATIS, 51 for SNIPS, and 36 for TOP.

In-Context Learning (ICL): We use a 20B parameter lan-
guage model [28] to generate new data using a small sample of
labeled data from the task at hand as context. In our experiments,
for each intent in each dataset, we fine-tune the language model
using 3 randomly sampled exemplar utterances using the tem-
plate Example from [intent_name] intent: utterance_text. For
example, for the flight intent in ATIS dataset, we would fine-tune
using utterances of the form Example with [flight] intent: do you
have an early morning direct flight from philadelphia to pitts-
burgh?. Following this procedure, we generate 27 samples of the
same intent by letting the model continue token generation after
the prompt (for example Example with [flight] intent:). For data
generation, we use nucleus sampling [29] with p = 0.5, 0.7, 0.9,
denoted as ICL_p5, ICL_p7 and ICL_p9, respectively.

5.3. Discussion
In our mitigation experiments, we focus on the baseline with 1%
training data since this is the most challenging setup with most
degradations. For SSL, we use data disjoint from the biased
sampling set for the unlabeled data. We use the same BERT
architecture from the baseline experiments for fine-tuning on the
augmented datasets. Table 4 summarizes our results.

We observe that the synthetic data obtained via generative
models trained with large volumes of world knowledge (e.g.
data from web crawl) or simple perturbations outperform models
trained on a combination of labeled and pseudo-labeled data. We
attribute this observation to the fact that semi-supervised tech-
niques use for pseudo-labeling techniques are dependent on the
seed set of labeled datapoints. In case of low labeled data setting,
the seed set of labels may not provide a high quality starting
point. Even simple data augmentation methods such as EDA
beat semi-supervised learning based methods. In absence of a
diverse and representative labeled datapoints, pseudo-labeling
unlabelled data can be challenging. Secondly, as reported in
other literature, large models perform the best in yielding high-
est quality data. In particular, in context learning tuned with a
handful of data beats other methods in most settings. This is
consistent with results reported elsewhere [30].

6. Conclusion

In many real-world ML settings, data collection may be biased
due to various reasons. In this paper, we simulate several types
of sampling biases in an intent classification system, motivated
by real-world scenarios. We observed models trained on biased
samples outperforming models trained on random sub-sampled
data, since under-represented classes did not get severely down-
sampled. To mitigate such biases, we test two sets of data aug-
mentation methods that make use of in-domain unlabeled data
and data generation models trained using large volumes of nat-
ural language corpora, and observe stronger performance in
models trained on data augmented with synthetic data (com-
pared with pseudo-labeled in-domain data). In the future, we
aim to extend this analysis to other biases (e.g., when data is
missing for some classes) and tasks in NLU.
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