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Abstract

Automatic speaker verification (ASV) systems are often
vulnerable to spoofing attacks, particularly unseen attacks. Due
to the diversity of text-to-speech and voice conversion algo-
rithms, how to improve the generalization ability of synthetic
speech detection systems is a challenging issue. To address this
issue, we propose an advanced RawNet2 (ARawNet2) by intro-
ducing an attention-based channel masking (ACM) block to im-
prove the RawNet2, with three main components: the squeeze-
and-excitation, the channel masking, and a global-local feature
aggregation. The effectiveness of the proposed system is evalu-
ated on both the ASVspoof 2019 and ASVspoof 2021 datasets.
Specifically, the ARawNet2 achieves an EER of 4.61% on the
ASVspoof 2019 logical access (LA) task, and on the ASVspoof
2021 LA and speech deepfake (DF) tasks, it achieves EER of
8.36% and 19.03%, which obtains relative 12.00% and 14.97%
EER reductions over the RawNet2 baseline, respectively.
Index Terms: synthetic speech detection, automatic speaker
verification, RawNet2

1. Introduction
In recent years, automatic speaker verification (ASV) [1], aim-
ing at verifying a claimed speaker identity through a spoken ut-
terance, has been widely applied in a variety of domains, such
as financial privacy security, personalized service, and audio
forensics. ASV systems, however, are vulnerable to spoofing
attacks in realistic scenarios, which include four major classes
of attacks: impersonation, replay [2], text-to-speech (TTS) [3]
and voice conversion (VC) [4]. In order to advance the develop-
ment of reliable ASV systems, ASVspoof challenge [5, 6, 7, 8]
has been held biennially since 2015, indicating that the inves-
tigation of countermeasure systems for spoofing attacks is be-
coming increasingly important.

Although the techniques of spoofing attacks detection have
made great progress, the generalization ability of reliable coun-
termeasures against unseen spoof attacks is still a challenging
issue. Some countermeasures that achieve good performance in
the development set may drastically degrade in the evaluation
set. There are five major methods for improving the general-
ization ability of countermeasures: data augmentation [9, 10],
feature engineering [11, 12, 13], system modeling [14, 15], loss
function [16] and ensembles [10, 17]. In this study, we focus
on the system modeling to improve the system robustness and
generalization ability.
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In the literature, many end-to-end neural networks for syn-
thetic speech detection have been designed to improve the sys-
tem modeling ability to defend against unseen spoofing attacks
[18, 19, 20]. For example, the RawGAT-ST [18] and AASIST
[19], which are based on RawNet2 [21] and graph attention net-
work, have proposed a spectral-temporal attention module to
extract the discriminative cues between bonafide and spoofed
speech in different temporal intervals and spectral sub-bands.
Although their experimental results demonstrate the effective-
ness on ASVspoof 2019 LA task, they didn’t perform the inves-
tigation of model generalization ability on cross-domain tasks.
Another work in [20], improved the model cross-domain ro-
bustness, by replacing the RawNet2 in the AASIST framework
with various self-supervised learning (SSL) front-ends, such as
wav2vec [22], etc. However, these pre-trained SSL front-ends
require large amounts of external speech data that forbidden by
the ASVspoof 2021 challenge [23], or it is difficult to collect
under most real-world application scenarios.

In this study, we also aim to improve the generalization
and robustness of the end-to-end ASVspoof architecture, espe-
cially for the cross-domain tasks with different unseen attack
algorithms. Based on the conventional RawNet2 [21], we pro-
pose an advanced RawNet2 (ARawNet2) by introducing a sim-
ple and effective attention-based channel masking (ACM) block
for synthetic speech detection. The ACM block is composed of
three key components: 1) The squeeze-and-excitation (SE). It
is an effective block that has been widely used in speaker veri-
fication committee[24, 25]. In ARawNet2, we use this idea to
recalibrate the channel-wise correlation of the high-level global
acoustic feature maps; 2) The channel masking. It is designed
to randomly mask partial features for enhancing the robust-
ness of the model; 3) The global-local feature aggregation. It
is proposed to fully exploit the complementarity between the
global and local deep feature maps. All our experiments are per-
formed on both the ASVspoof 2019 [7] and ASVspoof 2021 [8]
datasets, where their evaluation sets include many previously
unseen spoofing attacks that differ from those in the training and
development sets. Experimental results show that, the proposed
system significantly outperforms the official ASVspoof chal-
lenge baselines. On the ASVspoof 2019 LA task, the proposed
ARawNet2 achieves an EER of 4.61%, and on the ASVspoof
2021 LA and DF tasks, it achieves relative EER reductions of
12.00% and 14.97% over the RawNet2 baseline, respectively.

2. RawNet2
RawNet2, proposed in [21], is an end-to-end neural network ar-
chitecture that has been taken as the official baseline system of
ASVspoof 2021 challenge. It mainly consists of two parts: a
frame-level feature extractor and a classifier. The feature ex-
tractor is composed of four components: a sinc layer, six resid-
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ual blocks [26] with 1-dimensional convolution layers, six fea-
ture map scaling (FMS) [27] blocks and a gated recurrent unit
(GRU) [28] layer. First, given the raw waveform as input, the
sinc layer convolves the waveform with a set of parametrized
sinc functions [29] that implement 128 mel-scale band-pass fil-
ters, which forces the network to focus on high-level tunable
parameters with broad impact on the shape and bandwidth of
the resulting filter. Next, the extracted local acoustic features
from sinc layer are fed into the six residual blocks to extract
frame-level speaker representations. In addition, in order to de-
rive more discriminative speaker information, filter-wise fea-
ture map scaling is performed on the output of each residual
block. Next, the GRU layer with 1024 hidden nodes is used
to aggregate frame-level representations into a single utterance-
level representation. Finally, the GRU output is followed by a
classifier with two fully-connected layers and a softmax acti-
vation function, which can predict whether the input speech is
bonafide or spoofed. More details about the RawNet2 system
are described in [21].

3. Proposed methods
This section provides a detailed introduction of the architec-
ture of our proposed ARawNet2 model, the key components of
ACM block and the implementation of channel masking.

3.1. Architecture

The overall architecture of our proposed ARawNet2 model is
shown in the Fig.1, which is mainly designed based on the orig-
inal RawNet2 system [21], consisting of a frame-level encoder
and a classifier. Compared with the original RawNet2, there
are three major different points: 1) All 1-dimensional convo-
lution layers in six residual blocks have been replaced with
a 2-dimensional convolution layers, by adding a new channel
dimension into the original sinc layer to transfer the original
three-dimensional feature map into a four-dimensional one; 2)
We remove all feature map scaling operations after the out-
put of all residual blocks; 3) All FMS blocks in RawNet2 are
replaced with our proposed attention-based channel masking
(ACM) blocks that are shown in Fig.1.

3.2. Attention-based channel masking block

The whole structure of the proposed attention-based channel
masking (ACM) block is shown in Fig.2. Our idea is motivated
by the works in [18, 30], when the cochlea receives bonafide
or spoofed audio, the attention mechanism and masking effects
of the human auditory system are able to automatically focus
on the local and discriminative feature information of temporal
intervals and the spectral sub-bands in the global feature infor-
mation, which makes us to distinguish the bonafide or spoofed
audio accurately. Therefore, in the proposed ACM block, we
design three key components to simulate the perception ability
of human cochlea: the SE block, channel masking, and global-
local feature aggregation.

First, the SE block [31], acting as a simple attention
mechanism in the ACM, is used to recalibrate the channel-
wise discriminative information in both different temporal in-
tervals and spectral sub-bands between bonafide and spoofed
speech. Specifically, given the 3-dimensional feature map X
∈ RC×T×F , XGAP ∈ RC×1, derived from the operation of
global average pooling on time and frequency dimension, is de-
fined as:

XGAP =
1

T × F

T∑

i=1

F∑

j=1

Xij (1)

Figure 1: Overall architecture of the proposed ARawNet2. The
proposed Attention-based Channel Masking (ACM) block con-
sists of SE block, channel masking, and global-local feature ag-
gregation.

where C, T , and F represent the number of channels, frames,
and frequency bins, respectively. The recalibrated feature map
U with channel-wise interdependence is formulated as:

U = X ⊗ δ(W
C×C

r
2 × (relu(W

C
r
×C

1 ×XGAP ))) (2)

where × and ⊗ refer to matrix multiplication and element-wise

multiplication. W
C
r
×C

1 and W
C×C

r
2 are the weights of two

fully-connected layers. r is a dimensionality-reduction ratio of
the number of channels to control the network parameters. relu
and δ denote the Relu activation function and a sigmoid function
to scale the channel-wise weights.

Then, as shown in the below part of Fig.2, the output of
SE block is followed by the channel masking that is designed
to dynamically mask partial global features for enhancing the
robustness of our model. The details of the implementation of
channel masking will be described in section 3.3.

Finally, each residual block is applied to model the local
features with more discriminative cues between temporal in-
tervals and spectral sub-bands by 2-dimensional convolution
layers, while the output of channel masking contains more
global information derived from the features with the recali-
brated channel-wise interdependence. Therefore, to exploit the
complementarity between global and local features, we insert a
global-local feature aggregation operation in the ACM block to
get the final feature matrix Q by element-wise addition between
global feature map M and local feature map X , as shown in the
Fig.2.

3.3. Implementation of channel masking

Inspired by the frequency masking [32, 33] and temporal mask-
ing [34], in order to simulate the masking effects of the human
auditory system, in this study, we design a channel masking
operation to enhance the model learn more robust deep feature
representations. The details of the implementation of channel
masking are as follows. Specifically, the channel masking acts
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Figure 2: Illustration of attention-based channel masking
(ACM) block.

as randomly discarding a range of [C1, C2) features of chan-
nel dimension for the output of SE block (for example, [2, 4)
means that the features of the 2nd and the 3rd channels of U
will be masked by setting them to zero). During our exper-
iments, we first randomly select a number, f , from a unified
distribution between 0 and F , as the total channels that we ex-
pect to mask, where F = 4 refers to the maximum pre-defined
masking channels. Then, the first position of the masking chan-
nel C1 is chosen randomly from [0, C − f ], where C represents
the total number of the channel dimension of the feature map U ,
and C2 = C1 + f . Finally, in all our experiments, the above op-
erations will be implemented twice during each training epoch
before the global feature matrix M is finalized. The channel
masking is only applied during model training.

4. Experimental setup
4.1. Dataset and evaluation metric

All our experiments are conducted on the datasets of both
ASVspoof 2019 [7] and ASVspoof 2021 challenges [8]. Here
we focus on two tasks of synthetic speech detection: LA
and DF. All our systems and official baselines in these two
ASVspoof challenges are trained only using the LA training
set of ASVspoof 2019. However, the resulted models are used
to evaluate three different evaluation sets from the ASVspoof
2019 LA, ASVspoof 2021 LA and DF to measure their general-
ization ability under cross-domain/cross-dataset scenarios. The
detailed description of the dataset is shown in Table 1.

It is worth noting that those unseen spoofing attacks of
three evaluation sets that generated from diverse algorithms
are becoming increasingly complex, which differ from those
previously existing in training and development sets. The
training and development sets of ASVspoof 2019 LA contain
bonafide and spoofed data that generated with 6 different al-
gorithms (A01∼A06), while there are 13 different algorithms
(A07∼A19) to generate spoofed data of ASVspoof 2019 LA
evaluation set. Although the TTS, VC, and hybrid spoofing
attacks of ASVspoof 2021 LA evaluation set are the same as
those from ASVspoof 2019 LA evaluation set, the difference is
the former is degraded by different unknown transmission chan-
nels, resulting in a total of 181,566 trials. As for the evaluation
set of ASVspoof 2021 DF task, there are more than 100 undis-
closed attack algorithms with 611,829 test trials in total. We
use equal error rate (EER) [35] as a metric to evaluate the per-
formance of our model.

Table 1: Summary of the dataset of ASVspoof 2019 LA,
ASVspoof 2021 LA evaluation set and ASVspoof 2021 DF eval-
uation set. ‘Train’ and ‘Dev’ refer to training and develop-
ment sets of ASVspoof 2019 LA, respectively. ‘Eval(19LA)’,
‘Eval(21LA)’ and ‘Eval(21DF)’ represent the evaluation set of
ASVspoof 2019 LA, ASVspoof 2021 LA and DF, respectively.

Subset Bonafide Spoof Attacks
#Utts #Utts #Attack Types

Train 2,580 22,800 6(A01∼A06)
Dev 2,548 22,296 6(A01∼A06)
Eval(19LA) 7,355 63,882 13(A07∼A19)
Eval(21LA) 18,452 163,114 13(A07∼A19)
Eval(21DF) 22,617 589,212 >100(undisclosed)

4.2. Training setup

Our proposed model, ARawNet2, directly uses raw waveforms
as input. The duration of all utterances is fixed into 4 seconds
by either cropping long utterances or concatenating short utter-
ances [21]. No data augmentation is performed in our experi-
ments. The training set and the development set of ASVspoof
2019 LA are used to train all of our models and to select the best
model for system evaluation, respectively. As shown in Table 1,
the number of bonafide and spoofed data is heavily imbalanced.
Therefore, a weighted cross entropy (WCE) loss function is ap-
plied to train our model, where the ratio of weights of bonafide
and spoofed trials is set to 9 : 1. The dimensionality-reduction
ratio r is set to 16. All systems are optimized with ADAM op-
timiser [36] using a fixed learning rate of 0.0001, a mini-batch
size of 8, over 100 epochs and a weight decay of 0.0001.

5. Results and discussion
5.1. Overall results under cross-dataset conditions

Table 2 presents the overall results comparison between our pro-
posed ARawNet2 and the official baseline results of ASVspoof
2019 and 2021 challenges on three different evaluation sets.
The CQCC-GMM [11], LFCC-GMM [37], LFCC-LCNN [38]
and RawNet2 [21] are the official baseline systems in ASVspoof
challenges. The systems trained with LFCC-LCNN and
RawNet2 algorithms are only the baseline systems of ASVspoof
2021 challenge, while CQCC-GMM and LFCC-GMM are the
both used to build baseline systems of ASVspoof 2019 and
ASVspoof 2021 challenges. It is worth noting that all these of-
ficial baselines are trained on the training set of ASVspoof 2019
LA, that’s to say, all the EERs in Table 2 are achieved from the
models that trained on the same training set.

By comparing the results of official systems, it’s clear that
all EERs on the ASVspoof 2019 LA evaluation set are much
lower than the ones on other two evaluation sets of ASVspoof
2021. It indicates that the ASVspoof 2019 LA evaluation set is
much easier than ASVspoof 2021 LA and DF evaluation sets
to the CQCC-GMM and LFCC-GMM systems. This is be-
cause the condition/spoofing algorithms between the training
and evaluation sets are very close, while the synthetic spoofing
algorithms used in ASVspoof 2021 LA and DF evaluation sets
deviate far from the ASVspoof 2019 LA training set. Moreover,
this finding also tells us that, the models trained on ASVspoof
2019 LA can not generalize well to other evaluation conditions,
which demonstrate that they are very vulnerable to cross-dataset
application scenarios.

In addition, only from the results of ASVspoof 2021 LA
and DF evaluation sets, we see that LFCC-LCNN and RawNet2
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achieve similar results, but significantly outperform the CQCC-
GMM and LFCC-GMM systems. It indicates that the RawNet2
is a strong baseline that can provide a relatively fair comparison
with the proposed ARawNet2. Moreover, by comparing all the
results in Table 2, we see the proposed ARawNet2 achieves the
best performance, and its effectiveness can generalize well on
cross evaluation datasets. Specifically, the proposed ARawNet2
achieves an EER of 4.61% on the ASVspoof 2019 LA task. On
the ASVspoof 2021 LA and DF tasks, the ARawNet2 achieves
EER of 8.36% and 19.03%, which outperforms the RawNet2
baseline by relative 12.00% and 14.97%, respectively.

Table 2: Performance (EER%) comparison between our pro-
posed system and official baseline systems on ASVspoof 2019
LA, ASVspoof 2021 LA and DF evaluation sets. ‘19LA’, ‘21LA’,
and ‘21DF’ represent the ASVspoof 2019 LA, ASVspoof 2021
LA, and ASVspoof 2021 DF evaluation set, respectively. LFCC-
LCNN and RawNet2 are not the baseline systems of ASVspoof
2019 LA, and we denote the absent result as “-” in the table.

Method 19LA 21LA 21DF
CQCC-GMM[11] 9.57 15.62 25.56
LFCC-GMM[37] 8.09 19.30 25.25
LFCC-LCNN[38] - 9.26 23.48
RawNet2[21] - 9.50 22.38
ARawNet2(ours) 4.61 8.36 19.03

5.2. Results of ablation study

As shown in Table 3, the ablation experiments are performed on
the evaluation set of ASVspoof 2021 DF task to investigate how
the number of the operation times of channel masking influence
the performance of the proposed ARawNet2. It’s clear to find
that, as the number of operation times of channel masking in-
creases, the value of EER decreases initially and then increases.
Specifically, when the channel masking is implemented twice
during training, the ARawNet2 achieves the best performance
with an EER of 19.03%. This further indicates that the number
of channel masking operation times may lead to the perturba-
tion of features in the channel dimension by masking partial
features to enhance the robustness of the ARawNet2 model to
some extent.

Table 3: Performance of ARawNet2 with different operation
times of channel masking on the evaluation set of ASVspoof
2021 DF task.

Method # Operation times of channel masking
0 1 2 3

ARawNet2 21.70 20.37 19.03 21.33

The experimental results of the ablation study of three key
components of the ACM block in ARawNet2 are also per-
formed on the evaluation set of ASVspoof2021 DF, as shown
in Table 4. In this table, we denote the proposed ARawNet2
without ACM block as RawNet2∗. Compared with the EER of
22.38% of RawNet2 in [21], owing to removing the FMS oper-
ation in original RawNet2, the RawNet2∗ just achieves the EER
of 26.39% on the evaluation set of ASVspoof 2021 DF.

However, when the SE block is added to the RawNet2∗,
the system achieves the EER of 22.09%, which demonstrates
that the SE block could make full use of the channel-wise in-
terdependence to capture the salient features and discard the in-

Table 4: EER(%) on ablation studies of the three key com-
ponents of ACM block in ARawNet2 on the evaluation set of
ASVspoof2021 DF. SE, CS, and GLA denote the SE block, chan-
nel masking, and global-local feature aggregation, respectively.
RawNet2* denotes the proposed ARawNet2 without ACM block.

Method 21DF
RawNet2[21] 22.38
RawNet2* 26.39
RawNet2*+SE 22.09
RawNet2*+CS 20.99
RawNet2*+SE+GLA 21.70
RawNet2*+SE+CS 25.99
RawNet2*+SE+CS+GLA(ARawNet2) 19.03

significant features, leading to more discriminative representa-
tions. When we only add the channel masking into RawNet2∗,
the EER of the system is reduced to 20.99%, which clearly in-
dicates the channel masking is significant to construct the ACM
block. Then, when we insert the SE block and channel masking
into the RawNet2∗ at the same time, performance degrades by
3.90% (22.09% vs. 25.99%) compared with only inserting SE
block into RawNet2∗. We suspect that the combination of SE
block and channel masking may discard partial important fea-
tures, leading to degraded performance. When compared with
the last line result (19.03%) of ARawNet2, the above analy-
sis shows that the global-local feature aggregation is essential
for constructing the ACM block to exploit the complementary
information between global and local deep feature representa-
tions. Finally, when the SE block and global-local feature ag-
gregation are added into the RawNet2∗ at the same time, com-
pared with the EER of the proposed ARawNet2 (19.03%), the
new system only achieves an EER of 21.70%, which further in-
dicates channel masking is of primary importance for the ACM
block to enhance the robustness of the ARawNet2. Given the
above discussions, it is not difficult to find the fact that all three
components of the ACM block are significant for the proposed
ARawNet2 to improve the generalization ability.

6. Conclusion

In this paper, we propose an advanced RawNet2 (ARawNet2)
by introducing an attention-based channel masking (ACM)
block into the original RawNet2 to improve the performance
and robustness of synthetic speech detection system. The idea
of ACM block is inspired by the attention mechanism and mask-
ing effects of the human auditory system, and three key compo-
nents are specially designed to enable the ACM block with audi-
tory perception ability: SE block, channel masking, and global-
local feature aggregation. All our experiments are conducted
on the datasets of ASVspoof 2019 and ASVspoof 2021 chal-
lenges. Results show that the proposed ARawNet2 outperforms
four types of strong baseline systems, and the significant perfor-
mance improvements demonstrate the ability of generalization
and robustness of the proposed method against unseen spoofing
attacks on cross-dataset. Furthermore, the ablation study shows
that the combination of SE block, channel masking, and global-
local feature aggregation in the ACM block is very important
to improve the ARawNet2, and the operation times of channel
masking that applied on the outputs of SE block also influences
the performance of ARawNet2 to some extent.
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