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Abstract 

Prosodic boundary prediction plays an important role in speech 

synthesis, phonetic understanding, etc. In previous studies, su-

pra-segmental features such as pitch, energy, and duration have 

been widely used to explicitly model Mandarin prosodic boun-

daries. In this paper, we propose to refine implicit prosodic      

representations with fine-grained information from complex 

acoustic features including mel-spectrogram and context vec-

tors obtained from a pre-trained model. Pitch and energy are 

encoded as explicit prosodic representations. These two repre-

sentations extracted by dual audio encoders are fused by the  

decoder mainly composed of cross-attention layers. Then the 

fused representations are used to predict Mandarin prosodic 

boundaries. The results indicate that our proposed method out-

performs the baselines in the Mandarin prosodic boundary pre-

diction task, particularly for the minor prosodic phrases (#2). 

Index Terms: prosodic boundary prediction, dual audio enco-

ders, prosodic representation, multi-granularity decoder 

1. Introduction 

Prosody essentially refers to the parts of speech which involve 

stress, rhythm, and intonation. It is related to supra-segmental 

elements like pitch, duration, and intensity. Speakers can ex-

press the meaning of the words more effectively and rationally 

with an effective and logical prosody structure of speech, and 

the listeners can also follow the intention of speakers more 

clearly. Prosodic segmentation produces prosodic boundaries, 

which are crucial for speech communication, syntactic disam-

biguation, and enhancing the naturalness and comprehensibility 

of Mandarin speech synthesis. Prosodic boundaries are ranked 

based on the level of dispersion between the prosodic units, 

such as prosodic word, prosodic phrase and intonational phrase 

[1][2]. The Mandarin prosodic boundary prediction is generally 

regarded as a sequence-to-sequence based classification task to 

predict whether there is a prosody break after each character of 

the utterance. 

In previous studies, audio and text are two modalities com-

monly used to model Mandarin prosodic boundary detection. 

There are some studies of Mandarin prosodic boundaries using 

audio modality. Ni et al. proposed a hierarchical prosodic break 

classification method, which utilized the acoustic, lexical and 

syntactical features [3]. To improve the detection performance, 

Lin et al. suggested extracting tone nucleus-based supra-seg-

mental features with DNN [4]. Subsequently, Lin et al. added 

phonological information to their previous research and used 

LSTM for the detection of syllable-level prosodic boundary. 

And they achieved 77.85% accuracy for the Mandarin corpus 

[5]. Lin et al. applied the joint detection of sentence stress as 

well as prosody phrase boundary using multi-granularity infor-

mation of phoneme, syllable, and word. Then they obtained an 

experimental result of 0.91 F1 score with the Aix-MARSEC 

corpus [6]. In recent years, several studies have proposed simi-

lar approaches for predicting prosodic boundaries from texts, 

utilizing various techniques such as BLSTM-CRF, Attention, 

and BERT models [7-11]. Some other studies have found that 

incorporating linguistic information such as syntactic, lexical, 

and word embedding features can enhance the performance of 

the model in this task [12-15]. 

Although the above methods perform well in predicting 

Mandarin prosodic boundaries, the prediction of the confusable 

minor prosodic phrase boundary (#2) is still a challenging task. 

Prosody refers to variations in speech such as tone, pitch, sylla-

ble duration, and intensity, which are manifested explicitly in 

the audio signal. However, the implicit representations of pro-

sodic information in audio signals have been rarely used to ex-

plore the task. 

 

Figure 1: The structure of prosodic boundary. 

In this paper, explicit prosodic representations, such as su-

pra-segmental features mostly composed of pitch, energy, and 

duration are employed to predict prosodic boundaries. In the 

meanwhile, the mel-spectrogram and context vectors are pro-

jected to explore fine-grained implicit prosodic representations 

at the frame level. Fine-grained prosodic representations can 

help the model deal with the subtle variations of boundary clue. 

These two representations are fused by the multi-granularity de-

coder mainly composed of cross-attention layers. After fusion, 

the multi-granularity prosodic representations comprehensively 

determine the boundary from multiple prosodic subspaces, thus 

improving the robustness and generalization performance of the 

model. Furthermore, the structure of prosodic boundary that we 

employ is shown in Figure 1, CC represents characters within a 

prosodic word. PW (prosodic word) usually consists of 1-4 sy-

llables. CPH (minor prosodic phrase) is generally perceived for 

a shorter period time. MPH (major prosodic phrase) is followed 

by a relatively long pause and resetting of F0. IPH (intonational 

phrase group) mainly consists of several major prosodic phrases 

with decreasing F0 contours [16-18]. In Section 2, with the aid 
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Figure 2: The architecture of Mandarin prosodic boundary prediction model. 

of pertinent equations and figures, the architecture of Mandarin 

prosodic boundary prediction model we proposed will be ex-

plained. In Section 3, we introduce the corpus used in our work, 

contrastive experiments, ablation study, and other experimental 

configurations. The results are presented in Section 4 with de-

tailed analyses. In Section 5, we draw conclusions and provide 

suggestions for the future work. 

2. Proposed method  

The architecture shown in Figure 2 mainly consists of FSA 

block, dual audio encoders and a decoder. The essence of pro-

sody is the semantic information conveyed by the temporal var-

iations of acoustic features in audio signals. Powerful audio en-

coders that can accurately extract prosodic information from the 

audio waveform are crucial to improve the accuracy of predic-

tion. In this paper, EPE and IPE denote the explicit and implicit 

prosody encoder, respectively. 

2.1. Explicit prosody encoder 

As shown in Figure 2 (c), root-mean-square energy (RMS-

Energy) and three-dimension pitch are fed into EPE as supra-

segmental features, where pitch is extracted by the Kaldi toolkit 

and RMS-Energy is calculated by Equation 1. 

RMS-Energy =√
1

N
∑|x(n)|2

n

(1) 

The sequence of the audio signal is defined as x(n), where 

N represents the total number of samples in the signal. Firstly, 

the pitch and RMS-Energy features are processed by 1D-con-

volution layers, each followed by ReLU activation and layer 

normalization. The results of the above operation are concate-

nated to produce a transitional hidden matrix 𝑻, with a size of 

(batch_size, out_channel, out_length). Next, to get the prosodic 

boundary labels for each character of the utterance, we use a 

trainable parameter matrix 𝑾 to transform character-level con-

versions of the concatenated results. The size of  matrix 𝑾 is 

(batch_size, out_length, character_length). Then matrix 𝑾 per-

forms a multiplicative operation on matrix 𝑻 through the mat-

mul function. Then, the character-level hidden states are 

generated, with a size of (batch_size, out_channel, charac-

ter_length). Finally, we obtain explicit prosodic representations 

after feeding the character-level hidden states into the Bidirec-

tional Long Short-Term Memory (Bi-LSTM) module. 

2.2. Implicit prosody encoder 

As shown in Figure 2 (b), the encoder serves as the central com-

ponent of the model, and tasked with generating an implicit rep-

resentation that captures fine-grained prosodic information 

from the complex acoustic features. The mel-spectrogram is en-

coded through three 1D-convolution layers, each followed by 

the ReLU activation and layer normalization. Context vectors 

extracted by Wav2Vec 2.0 follow the same steps as the mel-

spectrogram [19]. These two hidden states are concatenated to 

produce the transitional hidden sequences. As depicted in Fig-

ure 2 (a), the FSA block implements the multi-head self-atten-

tion and a feed-forward layer, each followed by a residual con-

nection and layer normalization [20]. The transitional hidden 

sequences are fed into two FSA blocks to produce frame-level 

implicit representations with fine-grained prosody. Finally, a 

linear layer is utilized to ensure that implicit representations and 

explicit representations have matching hidden states dimen-

sions. 

2.3. Multi-granularity fusion decoder 

A multi-granularity fusion decoder is needed to fuse the frame-

level and character-level representations and then predict the 

prosodic boundary. The difficulty of fusing these two represen-

tations is that the frame-level representations are usually much 

longer than the character-level representations. In this paper, a 

cross-attention-based multi-granularity fusion decoder is im-

plemented as a solution to this issue. 

As depicted in the bottom half of Figure 2 (d), these two 

representations from dual audio encoders are fed into the 

stacked layers, consisting of multi-head cross-attention layers 

and a feed-forward layer. Since the total number of characters 

in the utterance sequence matches the length of the prosodic 

boundary prediction, we use the output of EPE as Query, and 

the output of IPE as Key and Value in cross-attention layers. 

The C = (C1,  C2,…CN,),∈,RN×D and F = (F1, F2,…FM,) ∈,RM×D 

respectively denote Query and Key / Value. D is the dimension 
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Table 1: Results of contrastive experiments. 

 

of the two representations. The fusion of the explicit prosodic 

representations and implicit prosodic representations can be de-

scribed as follows: 

Q
C

,  KF,,VF＝ WQC,  WKF,  WVF (2) 

O = softmax (
Q

C
 KF

T

√D
 ) VF (3) 

WQ , WK and WV are trainable matrices. O ∈ RN×D represents 

fused hidden output of the cross-attention layers. Afterwards, 

the output is passed through a post-processing module compri-

sing a feed-forward neural network with two linear layers and 

the softmax function. This module produces a probability dis-

tribution of prosodic boundaries. Cross Entropy Loss (CE) is 

adopted as the train loss function of the proposed architecture. 

3. Corpus and experiments 

3.1. Joint Mandarin dataset 

To conduct our experiments, we used the joint Mandarin dataset 

by merging the ASCCD (Annotated Speech Corpus of Chinese 

Discourse) Corpus and the Chinese Standard Girl Voice Corpus. 

The ASCCD Corpus consists of 4072 utterances recorded at the 

sampling rate of 16kHz, with a duration of 7 hours. These          

utterances were recorded by ten different speakers of Beijing 

Standard Mandarin. And the Chinese Standard Girl Voice     

Corpus is a public database containing around ten thousand     

utterances (≈,12 hours) recorded by a female Mandarin speaker. 

Then, the corpus is resampled to 16kHz to ensure consistency 

with the ASCCD Corpus. The joint Mandarin dataset is ran-

domly shuffled and subjected to a uniform data processing to 

ensure the fairness and robustness in our work. The dataset is 

split into the training set, development set, and test set at a ratio 

of 85%, 5%, and 10%, respectively, as presented in Table 2. 

3.2. Experimental configurations 

The experiments were conducted in the PyTorch framework, 

with the support of various tools such as Kaldi, Librosa, and 

Torchaudio. To evaluate the performance of our proposed 

model, we selected five baselines for comparison, as detailed in 

Section 3.3. The ablation study verifies the contributions of the 

IPE, as shown in Section 3.4. Furthermore, the experimental   

results are evaluated comprehensively by precision (P) and f1 

score (F1) . 

The IPE utilizes the WAV2VEC2_ASR_LARGE_960H to 

extract 768-dimensional context vectors as inputs. Due to the 

significant difference in dimensions of the input acoustic fea-

tures between dual audio encoders, we use convolutional 

kernels of different sizes to adapt to each of them. Both multi-

head self-attention and multi-head cross-attention all have six 

heads in our work. It not only improves efficiency but also       

facilitates the integration of multi-granularity representations 

across multiple prosodic subspaces. In this paper, every feed-

forward layer is composed of two linear layers that are activated 

by the ReLU activation. The trainable matrix 𝑾 is randomly  

initialized at the start of the train procedure in EPE. 

During the training stage, the parameters are optimized     

using Adam optimizer with a learning rate of 0.0001. In addi-

tion, L2 regularization is introduced to reduce complexity and 

prevent overfitting. Four Tesla 3090 GPUs are used to train the 

model with batch size of 128. 

Table 2: Statistics of the joint Mandarin dataset. 

 

3.3. Baselines 

Previous studies have typically addressed the prosodic boun-

dary detection task using two modalities: audio and text. 

LSTM-CRF [7], Self-attention [9], fine-tuned Bert [10], fine-

tuned Wav2Vec 2.0 [19][21] and Hubert [22] are designated as 

the baselines, and these baselines have been replicated using 

joint Mandarin dataset. Moreover, HuBert gets the same fine-

tuned configurations as Wav2Vec 2.0. We have maintained 

modal and structures of these five baselines to closely resemble 

the methods used in the relevant references. In Section 4, the 

results of baselines are contrasted with those of the proposed 

model. 

3.4. Ablation study 

We demonstrate the effectiveness of our proposed network with 

two ablation experiments: (1) The EPE can project implicit     

representation with fine-grained prosodic information from the 

complex acoustic features. (2) The IPE plays an essential role 

and makes valuable contributions to our work. For experiment 

(1), the prediction task of prosodic boundaries is carried out    

independently by the IPE and decoder. For experiment (2), it 

has the same experimental structure as experiment (1), except 

the IPE. EPE and decoder are used to predict the prosodic boun- 

daries. Specifically, the cross-attention layers in the multi-grain 

fusion decoder are changed to the  self-attention  layers  due  to 

the absence of the other audio encoder. All relevant analyses 

are described in Section 4.  

Model 
PW (#1) CPH (#2) MPH (#3) IPH (#4) 

P F1 P F1 P F1 P F1 

BLSTM-CRF 0.72 0.75 0.37 0.35 0.85 0.86 0.91 0.90 

Self-Attention 0.82 0.83 0.46 0.47 0.89 0.89 0.95 0.96 

Fine-tuned Bert 0.87 0.86 0.36 0.38 0.83 0.82 0.97 0.96 

Fine-tuned w2vec 0.81 0.82 0.40 0.41 0.86 0.87 0.98 0.98 

Fine-tuned HuBert 0.88 0.85 0.47 0.48 0.87 0.87 0.98 0.99 

Proposed 0.90 0.89 0.59 0.60 0.93 0.92 0.98 0.99 

Annotation Default #1 #2 #3 #4 

CC PW CPH MPH IPH 

Number 149773 56643 22945 17483 14072 
Proportion 57.4% 21.7% 8.8% 6.7% 5.4% 
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Table 3: Results of ablation study. 

 

4. Results 

In this paper, we evaluate the performance of our work in terms 

of the accuracy of prosodic boundary prediction on the test 

set.The results of contrastive experiments are shown in Table 1. 

Among the four prosodic boundaries, the prediction of #2 is the 

least satisfactory. The #2 (minor prosodic phrase) is inherently 

difficult to predict accurately, for #2 and #1(prosodic word) 

have similar acoustic structure [3]. There is a relatively short 

perceptual break after #2, which is longer than #1 but shorter 

than #3 (major prosodic phrase) . Thus #2 may be misclassified 

as #1 or #3. As compared to baselines, our proposed method 

predicts #2 better. The output of LPE contains fine-grained pro-

sodic information that helps the explicit prosodic representa-

tions fill in the fine-grained prosody spaces and participate in 

determining the variations of prosodic clues between the #2 

boundary and the #1, #3 boundaries. Furthermore, the results of 

ablation study could also confirm our opinion on this point. 

For the prediction of #4 boundary, all models have the 

relatively good performance. We fine-tune pre-trained models 

Bert, HuBert and Wav2Vec 2.0, which are representative in 

audio and text modality. Based on the results, the fine-tuned 

Hubert performs the best for the downstream task of prosodic 

boundary prediction. And the reason why HuBert model do the 

best is that fine-tuned HuBert uses both speech and text features 

as joint inputs for training, while the Wav2Vec 2.0 and Bert use 

only audio signals or text as inputs. The multi-modal pre-

trained model outperforms the unimodal pre-trained model in 

our task. Non-pre-trained models such as BLSTM-CRF and 

Self-Attention, have excellent performances among the training 

set but weak generalization ability for the test set. 

As shown in Table 3, we have found from the results that 

Only-IPE and Only-EPE have almost equal f1 scores except for 

the #2 boundary. The Only-EPE performs 9% inferior to the 

Only-IPE for the prediction of #2 boundary. The implicit 

representations support the EPE to alleviate  confusions to some 

extent between #2 and #1, #3 boundaries. The results largely 

confirms that the EPE can project fine-grained prosodic 

representations.  

The results of Only-EPE and proposed model  also reveal 

that the addition of IPE improves the predictions for all 

prosodic boundaries. For the #2 boundary, the performance of 

our model upgrades about 20% in f1 score. The proposed model 

demonstrates a robust capability in tracking all prosodic clues 

by incorporating IPE, which actually has strong contributions 

to the proposed model. 

5. Conclusion 

In this paper, we propose to utilize two acoustic encoders and a 

multi-granularity decoder to predict Mandarin prosodic bound-

aries. The dual acoustic encoders capture the variations of pro-

sodic clues and project them from different acoustic features. 

The outputs of dual acoustic encoders are fused at multiple 

granularities by the decoder. Our proposed method obtains the 

best results in the experiments and confirms the contribution of 

implicit prosodic representations for the model. In the future, 

we will try to explore Mandarin prosodic boundaries from a 

multi-modal approach, with a particular focus on #2 (minor pro-

sodic phrase). The task should be beneficial for prosody bias 

detection and speech synthesis. 
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