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Abstract

Despite the promising performance of existing frame-wise all-neural
beamformers in the speech enhancement field, it remains unclear
what the underlying mechanism exists. In this paper, we revisit
the beamforming behavior from the beam-space dictionary
perspective and formulate it into the learning and mixing of different
beam-space components. Based on that, we propose an all-neural
beamformer called TaylorBM to simulate Taylor’s series expansion
operation in which the 0th-order term serves as a spatial filter to
conduct the beam mixing, and several high-order terms are tasked
with residual noise cancellation for post-processing. The whole
system is devised to work in an end-to-end manner. Experiments
are conducted on the spatialized LibriSpeech corpus and results
show that the proposed approach outperforms existing advanced
baselines in terms of evaluation metrics.
Index Terms: multi-channel speech enhancement, taylor’s
approximation theory, beam-space, deep neural networks

1. Introduction
By virtue of the spatial information, multi-channel speech enhance-
ment (MC-SE) can effectively extract the target speech from the
noisy mixture and often leads to superior performance over the
single-channel (SC) case [1, 2]. Recently, with the advent of deep
neural networks (DNNs), we have witnessed the proliferation of neu-
ral beamformers (NBFs) by leaps and bounds, which make signifi-
cant progress over traditional spatial filters [3, 4, 5, 6]. Existing meth-
ods can be broadly broken into three categories. The first class works
in a hybrid mode, i.e., the speech/noise mask is estimated by a gen-
eral network, and a traditional utterance- or batch-level beamformer
is utilized for spatial filtering [3, 4]. A critic is that the two modules
are often separately tackled, the performance is often limited and
suffers from heavy degradation when the frame-wise processing is re-
quired. The second one follows the extraction-fusion protocol where
the spectral and spatial cues are explicitly/implicitly extracted, and
the network serves as the fusion module to combine both features
in the non-linear space to derive the target speech in an end-to-end
(E2E) manner [5, 7, 8, 9, 10]. As a natural extension of SC-SE, they
often cause non-linear speech distortion because the spatial discrimi-
nation property is not fully utilized. For the third class, more recently,
a few studies reveal the potential and superiority of frame-wise all-
neural beamformers in either time-domain [11] or time-frequency
(T-F) domain [12, 13, 14], where DNNs are employed to replace or
abstract part of the signal-processing based operations to estimate the
beamforming weights. As the beamforming weights are non-linearly
mapped frame by frame, less algorithmic delay is required while the
performance can be guaranteed under the E2E training criterion.

To enable frame-wise all-neural beamformers, the spatial and
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spectral modes are usually entangled in the non-linear feature
space, and the whole system is usually encapsulated into a black
box, thus lacking adequate interpretability and transparency [14].
[15] proposed to decouple the pipeline into the superimposition
of the spatial and spectral processing modes based on Taylor’s
approximation theory, where the 0th-order term corresponds to the
spatial filter and the remaining several high-order terms are designed
to cancel the residual interference in the spectral sense. Despite the
deep insight, we find it still unclear or even unknown where does the
generated spatial beam in the 0th-order term come from? In other
words, given the noisy complex spectra from the array as the input,
the estimated beam seems to be “created” from scratch via the
network without any explicit prior representations. To this end, we
revisit the spatial filtering behavior from the beam-space dictionary
perspective, and formulate the beamforming operation into the
adaptive activating and mixing of different basis beams in the beam-
space domain [16]. Based on that, we propose a novel all-neural
beamformer called TaylorBeamixer (abbreviated as TaylorBM)
based on Taylor’s approximation theory. Specifically, the 0th-order
term serves as the spatial filter by dynamically selecting and mixing
the beam components with different spatial responses. And multiple
high-order terms are superimposed as the residual noise canceller
for post-processing. To enable the E2E training, we replace the
complicated derivative terms with trainable modules. Compared
with [15], we merely add one differentiable layer with neglectable
parameters. Nonetheless, it provides a different and new perspective
on the beamforming process and also achieves on-par or better
performance. We hope this work can take a further step toward
understanding the internal logic of the white-box-oriented NBFs.

The rest of the paper is organized as follows. In Section 2, we
formulate the problem. In Section 3, the proposed method is pre-
sented. Section 4 gives the experimental setup, and results and anal-
ysis are presented in Section 5. Conclusions are drawn in Section 6.

2. Problem formulation
Given a recorded M-channel time-domain acoustic signal vector
x(n)∈RM in a reverberant and noisy environment, the physical
model after the short-time Fourier transform (STFT) can be given:

Xl,k=ckSl,k+Vearly
l,k +Vlate

l,k +Nl,k (1)

where {Xl,k,Vl,k,Nl,k}∈CM denote the mixture, reverberation,
and noise components in the frequency index of k ∈ {1,···,K}
and time index of l ∈ {1,···,L}. ck ∈ CM is the direct part of
acoutic transfer function (ATF) vector of speech and Sl,k∈C is the
complex spectrum of the clean speech. Superscripts (·)early and
(·)late namely denote the early and late part of the reverberation
component. Without loss of generality, the first channel is selected
as the reference channel.

We aim to suppress the directional noise and late reverberation
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component, and the beamforming technique is commonly adopted,
given by

S̃l,k=WH
l,kXl,k, (2)

where Wl,k ∈CM denotes the beamforming weights. ·̃ and (·)H

denote the estimated variable and Hermitian transpose, respectively.
In [17], the adaptive beamformer was decomposed into the

product of a fixed beamformer (FB) and a post filter (PF):

Wl,k=BFix,kGl,k, (3)

where BFix,k is a time-invariant fixed beam andGl,k is a controlling
coefficient in each T-F bin. However, as the desired speech source
may appear in any spatial position with different direction-of-arrivals
(DOAs), it seems far from adequate to track and approximate the
adaptive beamformer with merely one set of FB and PF. Towards
this end, we revisit the beamforming process and formulate it
into the adaptive activating and mixing of a set of beam-space
components. Concretely, we define a time-invariant beam-space
dictionary (TI-BD) B = (B1,···,BP ) ∈ CK×M×P , where
Bp ∈ CK×M refers to the basis beam with index p ∈ {1,···,P}.
To control the gain, one can allocate each beam with a different
activating coefficient, and the activating matrix can be defined as
G = (G1,···,GP ) ∈ RL×K×P . Therefore, the decomposition in
Eq.(3) is converted into a more generalized format, i.e.,

Wl,k=
P∑

p=1

Bk,:,pGl,k,p. (4)

Recall that in the non-negative matrix factorization (NMF)
based SE methods [18, 19], a similar mathematical expression has
been given, but they are by no means the same thing. The major
difference is that the dictionary herein is built in the beam-space
domain while the dictionary in the NMF-based SE is built in the
frequency domain. Substituting Eq.(4) into Eq.(2), one can get

S̃l,k=
P∑

p=1

GH
l,k,pYl,k,p, (5)

where Yl,k,p
def
=BH

k,:,pXl,k∈C refers to the obtained beam output by
the pth basis beam. As such, we provide a different insight toward
the beamforming process, i.e., the beamforming operation can be
regarded as the mixing strategy within the beam-space dictionary
weighted by different activating coefficients. This is in essence a
type of dictionary learning [20, 21].

We assume that the beamformer does not introduce distortions
to the desired signal component, e.g., has MVDR. The output signal
of the beamformer can thus be given by

S̃l,k=
P∑

p=1

GH
l,k,pYl,k,p=Ŝl,k+

P∑

p=1

GH
l,k,pBH

k,:,pRl,k, (6)

where Ŝ is the target speech of the reference channel, Rl,k=Vlate
l,k +

Nl,k. Assuming there exists a prior term δl,k,p for each beam, which
aims to cancel the residual noise after the summation, one can get

Sl,k=
P∑

p=1

GH
l,k,p(Yl,k,p+δl,k,p), (7)

where δl,k,p=−BH
l,k,pRl,k will be discussed later. One can see that

if the each beam can introduce the prior term and add it in advance,
then we can recover the target speech perfectly in theory. From
now on, we will drop the subscript {l,k} if no confusion arises. We
abstract the operation of weighting each beam as a general function
Fp(·), and assume the function to be differentiable to each order,

then we can resolve Eq. (7) with infinite Taylor’s series expansion
at Yp as

S=
P∑

p=1

Fp(Yp)+

+∞∑

q=1

1

q!

P∑

p=1

∂qFp(Yp)

∂qYp
δqp, (8)

where the 0th-order represents the behavior of spatial filtering
and high-order terms serve as the residual noise canceller for
post-processing. Note that in [15], a similar format was derived.
However, in this work, we provide a more intuitive explanation of
the beamforming behavior, i.e., a set of beam components are first
generated by the time-invariant beam-space dictionary in advance,
followed by an adaptive activating matrix to mix and estimate the
target spatial beam. In contrast, in [15], it remains unclear about
the internal mechanism of the time-variant beam generation.

3. Proposed approach
3.1. Relation between adjacent order terms

In practical implementation, we usually truncate the order number
into a finite value, i.e., Q. To resolve Eq.(8), let us notate the qth
order term asH(q,Y,δ), shown as

H(q,Y,δ)=
P∑

p=1

∂qFp(Yp)

∂qYp
δqp. (9)

Note that the factorial term is dropped for convenience. To
obtain the relation between adjacent orders, we differentiate
H(q,Y,δ) with respect to Yp:

∂H(q,Y,δ)

∂Yp

=
∂

∂Yp

(
∂qFp(Yp)

∂qYp

δ
q
p

)
+

∂

∂Yp



∑

p
′ 6=p

∂qF
p
′
(
Y
p
′
)

∂qY
p
′

δ
q

p
′


.

(10)

Ideally, if each acoustic source lies within a different beam
component, neighboring beams can be approximately assumed as
statistically mutually independent. The more the number of micro-
phones and beams, the better the independence assumption can hold.
Meanwhile, we can control the orthogonality of beams by selecting
a suitable beam-space dictionary. To simplify the derivation, we
assume the statistical independence between Yp and Yp′ for ∀p′ 6=p.
Eq. (10) can then be further converted according to the chain rule:

∂H(q,Y,δ)

∂Yp
=

∂

∂Yp

(
∂qFp(Yp)

∂qYp

)
δqp+

∂qFp(Yp)

∂qYp

∂δqp
∂Yp

. (11)

Notice that,
P∑

p=1

∂

∂Yp

(
∂qFp(Yp)

∂qYp

)
δ(q+1)
p =H(q+1,Y,δ), (12)

P∑

p=1

∂qFp(Yp)

∂qYp

∂δqp
∂Yp

δp=−q
P∑

p=1

∂qFp(Yp)

∂qYp
δqp=−qH(q,Y,δ).

(13)

We can thus derive the recursive formula between H(q,Y,δ)
andH(q+1,Y,δ) as

H(q+1,Y,δ)=qH(q,Y,δ)+
P∑

p=1

∂H(q,Y,δ)

∂Yp
δp. (14)

One can get that there exists one term in the right-hand of
Eq. (14) that involves both the derivative operation and δp. Moreover,
we actually do not know its real distribution. To this end, we replace
the complicated term with a trainable network module and learn it
directly from training data automatically. Besides, as the derivative
operation is avoided, the training process can thus be more stable.
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Figure 1: The diagram of the proposed TaylorBM. Different modules are marked by different colors.

Table 1: Ablation study on Set-B. BOLD indicates the best score.

Entry Beam
P PESQ ESTOI (%) SI-SNR (dB)Dic.

1b Fix-DS 36 2.97 76.79 8.21
1a Fix-SD 36 2.97 78.18 8.65
1c Semi 36 3.04 79.86 8.92
1d Full-v1 36 3.05 79.87 9.12
1e Full-v2 36 3.10 80.76 9.62
2a Full-v2 3 2.96 77.29 8.60
2b Full-v2 6 3.06 80.53 9.42
2c Full-v2 12 3.08 80.53 9.53
2d Full-v2 72 3.10 80.75 9.57

3.2. Time-invariant beam-space dictionary
To analyze the impact of the beam-space dictionary, three
TI-BD tactics are investigated, namely fixed, semi-learnable, and
full-learnable. For fixed type, we select two classical FBs as
the candidate, namely delay-and-sum (DS) and superdirective
(SD) [23], which can be expressed:

Bk,p=
Φ−1
k hk,p

hH
k,pΦ

−1
k hk,p

, (15)

where h and Φ denote the steering vectors and noise correlation
matrix, respectively. When Φ is an identity matrix, the calculated
beamformer corresponds to the DS case, and that of SD if Φ is
the diffuse noise correlation matrix. Here we uniformly sample the
space withP beams by adjusting the steering vector toward the target
DOA. For example, if the circular array is employed and spatial
resolution ∆θ=10◦, then the number of beams P is 360

∆θ
=36.

In the semi-learnable setting, part of terms can be trainable.
For example, we set the parameters of Φ to be trainable while
steering vectors are fixed so that the noise correlation matrix can
be optimized in the training process. Note that to guarantee the
semi-positive property of the noise correlation matrix, its inversion is
calculated by Φ−1 =UUH [24] and U is a lower triangular matrix.

For full-learnable scheme, two versions are set, namely notated
as Full-v1 and Full-v2. For the former, both the noise correlation
matrix and steering vectors to be trainable but the dictionary is still
calculated following the formula of Eq. (15). For the latter, we
investigate whether keeping the physical meaning of the basis beam
is necessary or not. After the initialization, the whole dictionary is
switched to be trainable and it does not need to follow the formula
shown in Eq. (15) in the training process.

3.3. Network structure
The overall diagram of the proposed system is shown in Fig. 1.
In general, any existing network structures can easily adapt to
our framework, and in this study, we adopt the same structure
as [15]. After being transformed by TI-BD, the noisy spectra

from the array are projected into a beam set with P beams, and
we concatenate them along the channel dimension to obtain
the tensor Y ∈ CL×K×P . In the 0th-order module, a typical
“Encoder-Decoder” structure is adopted with cascade squeezed
temporal convolution modules (S-TCMs) [25] in the bottleneck
for sequence modeling. After that, sub-band LSTMs are utilized to
estimate the activating matrix for beam mixing in each T-F bin. For
the high-order terms estimation, we follow the recursive formula in
Eq. (14) and multiple S-TCMs are adopted to model the distribution
of the complicated derivative term. Finally, we superimpose both
the 0th-order and high-order terms to obtain the target speech.

4. Experimental setup
4.1. Dataset configuration

We use the open-sourced LibriSpeech ASR corpus [26] to synthe-
size the multi-channel noisy-clean pairs, where train-clean-100,
dev-clean, and test-clean are used for training, validation and testing,
respectively. For directional noise source, we randomly select
20,000 types of noises from the DNS-Challenge noise set, whose
duration is around 55 hours. We simulate multi-channel RIRs based
on a circular array of seven microphones, where one microphone
is placed in the center and the remaining six microphones are uni-
formly spaced on a circle. The radius of the circle is set to 4.25 cm.
Without loss of generality, the microphone in the center is selected as
reference. The room size ranges from 5-5-3 m3 to 10-10-4 m3 in the
length-width-height format. The reverberation time (T60) is sampled
in the range of 0.1-1.0 s and the first 0.1 s of the room impulse
response (RIR) with reverberation time shortening technique [27]
is convolved with clean speech to obtain the target speech. For each
target speech, we randomly choose 1-3 positions to play the noise
and the distance between the source and microphone center ranges
from 0.5 m to 5.0 m. All the sources are assumed to be static without
changing their positions within one utterance. The signal-to-noise
ratio (SNR) is chosen from [−5,10] dB. Totally, we generate 40,000
and 10,000 noisy-clean pairs for training and validation, respectively,
and the average utterance length is around 4-second.

For model evaluations, two sets are set, namely Set-A and Set-B.
In Set-A, we only set one directional noise with four DOA-difference
cases, namely 0-15◦, 15◦-45◦, 45◦-90◦, and 90◦-180◦. For Set-B,
1-3 directional noises are placed with randomly selected DOAs. For
both sets, around 50 noises from MUSAN corpus are selected [28].
Testing SNR ranges [−5,5] dB, and 200 pairs are generated.

4.2. Training configuration
All the utterances are sampled at 16 kHz. 20 ms squared-root Hann
window is selected with 50% overlap between adjacent frames. 320
FFT is adopted, leading to 161 dimensions in the frequency axis.
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Table 2: Quantitative comparisons with advanced baselines. The values are specified with PESQ/ESTOI/SI-SNR/DNSMOS formats.

Systems
Param. MACs Set-A (DOA difference between target speech and noise)

Set-B
(M) (G/s) 0-15◦ 15◦-45◦ 45◦-90◦ 90◦-180◦

Noisy - - 1.73/45.39/-1.51/1.21 1.73/44.34/-1.71/1.19 1.71/45.03/-1.36/1.20 1.66/44.89/-1.48/1.15 1.63/41.13/-1.89/1.11
TI-MVDR (Oracle) - - 2.54/75.32/9.08/1.91 2.66/77.22/9.72/2.05 2.71/78.26/9.63/2.05 2.70/79.14/10.04/2.02 2.46/73.05/8.78/1.82
TI-MWF (Oracle) - - 2.66/77.35/12.15/1.89 2.74/78.98/12.52/2.01 2.79/80.18/12.85/1.97 2.77/80.96/13.18/1.97 2.56/75.01/10.79/1.77
FasNet-TAC(4ms) 2.65 16.52 2.53/70.33/8.44/2.43 2.63/72.73/9.25/2.50 2.75/75.51/10.01/2.52 2.76/76.26/10.16/2.55 2.59/71.51/8.69/2.40

MMUB 1.96 8.35 2.27/62.34/5.68/2.29 2.26/62.11/5.81/2.29 2.34/64.47/6.47/2.32 2.26/63.31/6.25/2.32 2.26/60.86/5.66/2.22
NSF 12.96 4.99 2.68/71.81/5.69/2.69 2.69/71.69/5.99/2.71 2.73/72.54/6.23/2.70 2.69/72.15/6.35/2.75 2.63/70.12/5.43/2.63

COSPA 3.66 1.16 2.27/62.22/5.72/2.10 2.36/63.32/6.23/2.11 2.51/67.13/7.05/2.19 2.54/68.93/7.66/2.24 2.31/61.07/5.29/2.08
FT-JNF 3.35 54.36 2.72/71.29/7.38/2.33 2.84/74.59/8.06/2.44 2.95/76.40/8.56/2.47 2.97/77.36/8.89/2.52 2.81/72.93/7.58/2.27
EaBNet 2.82 7.44 3.00/78.87/8.79/2.60 3.10/81.18/9.34/2.64 3.21/82.93/10.05/2.64 3.22/83.51/10.28/2.67 3.04/79.69/8.82/2.56

TayloyBF 5.58 8.62 3.00/78.90/8.98/2.65 3.12/81.49/9.69/2.71 3.21/83.13/10.32/2.74 3.23/83.64/10.57/2.76 3.05/80.07/9.18/2.64
TaylorBM (Ours) 5.63 9.18 3.06/80.12/9.59/2.73 3.14/82.05/10.14/2.80 3.24/83.62/10.75/2.79 3.26/84.06/10.86/2.80 3.10/80.76/9.62/2.70
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Figure 2: An example visualization. (a) Enhanced speech by the
proposed method. (b)-(c) Activation matrix for semi-learnable
and full-learnable TI-BD, respectively. (d)-(e) Beampattern for
semi-learnable and full-learnable TI-BD.

The power spectrum compression strategy is adopted to decrease
the dynamic range and the compression factor is empirically set to
0.5 [29]. “RI+Mag” loss with MSE criterion is adopted as the loss
function [25]. Besides, oracle MVDR is adopted as the supervision
of the 0th-order term to restrict the distortionless propoerty of the
spaial response. Adam optimizer [30] is adopted, and 60 epochs
are trained in total with the batch size of 6 at the utterance level.
The learning rate is initialized at 5e-4 and will be halved if the loss
value does not decrease for two epochs.

4.3. Comparison benchmark
We empirically set the Taylor order to three, i.e., Q = 3. For
beam-space dictionary, the number of beam base P is set to 36 and
we also study the impact of different P values in the ablation study.
We compare with other advanced baselines, including MMUB [31],
NSF [9], FasNet-TAC [11], COSPA [32], FT-JNF [10], EaBNet [14],
TaylorBF [15], and oracle TI-MVDR, and TI-MWF.

5. Results and analysis
5.1. Ablation study

We conduct the ablation study to analyze the impact of the beam-
space dictionary in terms of type and number, whose metric results
in terms of PESQ [33], ESTOI [34], and SI-SNR [35] are shown in
Table 1. Several conclusions can be drawn. First, when the DS and
SD are employed in the beam-space dictionary, we observe the worst
metric scores. This is because FBs only exhibit decent characteristics
in the specific noise fields. For example, DS beamformer yields the
largest white array-gain while the SD beamformer has the largest di-
rectivity under the diffuse noise field. However, in practical acoustic
scenarios, the noise field can be relatively complicated, and using a
fixed beam-space dictionary may not be adequate to describe the spa-
tial relations accurately. Then we switch the noise correlation matrix
to be learnable, and from entry 1a(b) to 1c, one can observe notable
metric improvements. This reveals the significance to represent the
time-invariant noise field properly. When both steering vectors and
noise correlation matrix are learnable, only marginal performance
gain is obtained. We attribute the reason as a dense spatial beam
sampling strategy is adopted, e.g., 36, which is a complete spatial

representation even with oracle steering vectors. Finally, we observe
further improvements when the basis beam does not obey the physi-
cal formula of FB anymore, i.e., from entry 1d to 1e. This shows that
current manually prior constraints may not be always necessarily
the feasible option from the joint learning perspective [13].

When P increases from 3 to 36, consistent improvements are
achieved, indicating that increasing the number of spatial bases
can benefit the learning of spatial cue. However, when P further
increases to 72, no performance gain is obtained and thus 36 beam
bases are employed hereafter.

5.2. Results comparison with advanced baselines

Table 2 shows the quantitative comparisons with previous baselines.
Besides PESQ/ESTOI/SI-SNR, DNSMOS [36] is also adopted,
which is an effective tool to simulate the subjective rating. One
can see that overall, the proposed method yields better performance
than the baselines. Compared with TaylorBF, we only add one
differentiable layer with neglectable the number of parameters,
nonetheless, we observe consistent improvements in terms of
different metrics. Also, as we convert the beamforming operation
in the network into the beam-space dictionary learning and adaptive
activating, the proposed method can exhibit better interpretability
and provide more insight.

Fig. 2 shows the visualization of the beam activation and
beampattern at the time index t = 3.3 s. The target source is located
at 182◦ and three directional noises are placed at {1◦,218◦,237◦}.
One can see that in Fig. 2(b), the beam response has a relatively large
value in the beam index of 18 and low values in the 1st, 21-24th
index, indicating that the proposed model can properly select the
beam component in the spatial sense. Interestingly, in Fig. 2(c),
the activating distribution seems irregular and does not follow the
expected spatial indication, and we attribute the reason as the beam-
space dictionary and activating matrix are jointly learned and thus
the basis beam may not obey the originally uniform spatial distribu-
tion. From Fig. 2(d)-(e), one can see that for either semi-learnable
and full-learnable, the 0th-order term can effectively preserve the
target source in the expected direction and suppress the noises by
nulling, revealing that the 0th-order indeed serves as a spatial filter.

6. Conclusions
In this paper, we propose a Taylor-inspired all-neural beamformer
dubbed TaylorBM for multi-channel speech enhancement . A beam-
space dictionary is first employed to convert the received signals of
different microphones into the dense beam distribution in the beam-
space domain. Following Taylor’s series expansion formula, in the
0th-order term, the spatial filter works by adaptively aggregating and
mixing the beam components with various responses. And multiple
high-order terms serve as the residual noise for post-processing.
Experiments on a circular array with seven microphones reveal the
superior performance of the proposed approach.
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