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Abstract
Self-sentiment provides direct feedback from users and is vital
in accurately evaluating and improving the quality of dialogue
systems. However, few studies focus on self-sentiment pre-
diction, and the works on third-party sentiment prediction suf-
fer from two problems when predicting self-sentiments: Self-
sentiment annotations are labeled by the speakers themselves,
leading to solid individual bias in annotations and a sub-optimal
prediction; The hardness of collecting sufficient data with self-
sentiment annotations limits the size of the data, resulting in
the overfitting problem. This work hence proposes a novel
meta-learning domain adversarial contrastive neural network
(MetaDACNN) that extracts user-shared prior knowledge and
learns user-specific classifiers to handle individual bias and
to alleviate overfitting. Experimental results on two public
datasets show that MetaDACNN improves the prediction per-
formance and alleviates individual bias compared to state-of-
the-art models.
Index Terms: self-sentiment prediction, individual bias, meta-
learning, domain adversarial contrastive learning

1. Introduction
Nowadays the interest in developing multimodal dialogue sys-
tems (MDS) [1] is on the rise. The recent success of learning
methodology across modalities [2, 3, 4] is responsible for that.
Compared to traditional dialogue systems which focus on only
text-based interactions, MDS has the potential to provide more
engaging and effective interactions with users by leveraging the
rich and diverse information available in multiple modalities,
such as text, speech, images, and videos. In such systems, users’
sentiments play vital feedback in evaluating the goodness of re-
sponses generated by a dialogue system and enabling the sys-
tem to better understand and respond to the emotional content
of users [5, 6].

Considering the dynamic characteristics of user sentiments
in a given dialogue, most previous efforts work on the task of
the polarity (positive and negative) prediction for exchange-
level sentiments, where the sentiment annotations are labeled
per interaction of utterances between the user and the system,
i.e., exchange-level dialogue [5, 7, 8, 9]. This work also studies
exchange-level sentiment prediction. For the sake of simplicity,
all sentiments in the rest of the paper denote the exchange-level
sentiment without any special explanation. According to the
sentiment annotations labeled by the third-party expert or the
speaker themself, the sentiment can be categorized into third-
party sentiment and self-sentiment. To our best knowledge, al-
most all previous studies focus on designing sophisticated mod-
els for third-party sentiment prediction [5, 7, 8, 9].

However, these works lose their superiority in self-
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Figure 1: Ratio of exchange-level dialogues with the most simi-
lar features but different sentiment annotations

sentiment prediction (SSP) due to the following two problems:
1) Sentiment expressions vary from person to person, leading
to the first problem, i.e., solid individual bias in self-sentiment
annotations [3, 10]. The aforementioned works ignore this indi-
vidual bias and thus result in a sub-optimal prediction. To ana-
lyze individual bias, for all the pairs of exchange-level dialogues
in the dataset we used, i.e., Hazumi1902 and Hazumi19111, we
counted the ratio of the pairs that have the most similar fea-
tures but different self-sentiment annotations2. The result is
illustrated in Figure 1. As these figures presented, the pairs
containing dialogues from different users have over 15% and
18% more cases with different sentiment annotations than those
containing dialogues from the same user for Hazumi1902 and
Hazumi1911, respectively. The inconsistent relation between
features and sentiments makes the model struggle to infer accu-
rate sentiments. 2) Collecting dialogue data with self-sentiment
annotations is extremely expensive and time-consuming. This
limits the size of data, including the number of users and the
number of user-wise data, and results in an over-fitting problem
when making predictions with the aforementioned sophisticated
models.

To tackle the above two problems, we propose a novel
meta-learning domain adversarial contrastive neural network
(MetaDACNN) that combines a meta-learning framework and a
novel class-wise domain adversarial contrastive learning frame-
work. The base model of MetaDACNN consists of an encoder,
a classifier, and a domain discriminator. To handle individ-
ual bias, we borrow the idea from gradient-based meta-learning
[11] and consider self-sentiment predictions for different users
separately. We denote the prediction for one user as one learn-
ing task. The meta-learning framework in MetaDACNN locally
updates the classifier to learn a meta-classifier that contains
user-shared prior knowledge extracted from past SSP tasks.

1The doi is doi/10.32130/rdata.4.1
2We calculate the cosine similarities with the output of the encoder,

i.e., Gϕ(xi) in Equation 2.
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Figure 2: Overview of the proposed MetaDACNN

This knowledge can guide the meta-classifier to quickly adapt
to similar unseen prediction tasks. Different from traditional
meta-learning [11], which locally updates the whole model,
MetaDACNN locally updates the classifier only and freezes
the encoder to extract user-shared features. These features can
guide the meta-classifier to learn user-shared prior knowledge
from limited data and to alleviate the over-fitting problem.

Traditional meta-learning requires thousands of learning
tasks to learn task-shared knowledge [11]. To adapt to the lim-
ited tasks (tens of users) in SSP, we denote the prediction for
one user as a domain and introduce domain adversarial learning
(DAL) into SSP. DAL is effective to extract domain-shared fea-
tures from limited domains [12]. Analogously, it is expected to
alleviate overfitting by extracting user-shared features from lim-
ited users. Traditional DAL methods rely on the user labels to
confuse the domain discriminator and to extract domain-shared
features [12, 13, 14]. However, all data in one learning task are
labeled with the same user ID in meta-learning. We hence de-
velop a new class-wise domain adversarial contrastive learning
framework that removes the use of the highly imbalanced user
labels by contrastively aligning the latent feature spaces learned
from different users’ data.

Our experimental results on two public datasets demon-
strate the effectiveness of our MetaDACNN in improving the
prediction performance and alleviating individual bias com-
pared to state-of-the-art domain adversarial learning and meta-
learning methods. Besides, our experimental results also in-
dicate that simply increasing the trainable parameters and using
complex models cannot improve classification performance due
to the limited training data and solid individual bias.

2. Method
2.1. Problem Formulation

Inspired by meta-learning [11], we consider the self-sentiment
prediction for different users as different learning tasks. To
study the self-sentiment prediction, we leverage two public
datasets, Hazumi1902 and Hazumi1911, which are composed
of exchange-level dialogues from a dialogue system. Each
exchange-level dialogue includes the multimodal input and the
corresponding self-sentiment annotation. We denote a dataset

as D = {Du|u ∈ U}, where U is the user set and Du =
{(xi, yi)|i ∈ Nu} is the set of exchange-level dialogues for
user u. Here, xi, yi, andNu are the multimodal input (a high di-
mensional vector), the binary self-sentiment annotation labeled
by user u, and the number of exchange-level dialogues for user
u, respectively. To handle the individual bias in annotations, we
learn a user-specific classifier Fθu(·) for each user u to adapt to
the individual bias, where θu is the parameter set of the classi-
fier. For u, The predictive self-sentiment annotation ŷi is calcu-
lated by

ŷi = Fθu(xi). (1)

2.2. Overview of Proposed Method

To tackle the individual bias problem and the overfitting prob-
lem caused by the limited data, we propose a new meta-learning
domain adversarial contrastive neural network (MetaDACNN),
which is depicted in Figure 2. MetaDACNN combines a meta-
learning framework and a novel domain adversarial learning
framework. Motivated by [11], the meta-learning framework
includes a user-specific update and a global update. The former
locally updates a user-shared classifier to generate user-specific
classifiers that can handle individual bias. The latter learns the
user-shared classifier and combines a class-wise domain adver-
sarial contrastive learning framework that explicitly aligns the
feature spaces learned from different users’ data to extract user-
invariant features for alleviating overfitting.

2.3. Base Model

To learn user-specific classifiers and a user-shared encoder, we
add an encoder Gϕ(·) and reformulate the prediction of self-
sentiment as

ŷi = Fθ(Gϕ(xi)), (2)

where Fθ is the user-shared classifier with the parameter θ. The
input xi has different pre-processed unimodal features, includ-
ing audio ai: 384 dim, linguistic li: 768 dim, and video vi: 86
dim. Considering the small size of the dataset, we follow the
same early fusion method in [3, 10] to calculate xi by concate-
nating different unimodal features xi = [ai, li, vi].
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2.4. User-specific update

To handle the individual bias in self-sentiment annotations, we
learn a user-specific classifier for each user in this part. To
achieve this, we split each user’s dataset Du into a support set
Su and a query setQu in chronological order. Then, the support
set Su is leveraged to locally update the user-shared classifier
Fθ , which is formulated by

θu ← θ − α · ∇θL (Su|Fθ,Gϕ) , (3)

where α is the learning rate for this local update. The loss
L (Su|Fθ,Gϕ) denotes the binary cross-entropy (BCE) loss
measured on Su and is calculated by

L (Su|Fθ,Gϕ) = − 1

|Su|

|Su|∑

i=1

LBCE(ŷi, yi). (4)

By doing so, we get the user-specific classifier Fθu .

2.5. Domain Contrastive Global Update

In this part, we learn the user-shared encoder and the user-
shared classifier that contain prior knowledge and can fast adapt
to unseen users. To better extract prior knowledge from limited
training users, we develop a new class-wise domain adversar-
ial contrastive learning framework to explicitly align different
users’ feature spaces learned by the encoder Gϕ.

Following [15, 16], we add an additional tiny network Hψ
with several dense layers to get the latent feature for domain
adversarial learning. The latent feature of data xi is formulated
as ei = Hψ(Gϕ(xi)). After that, we propose a novel class-wise
contrastive loss that aligns different users’ latent feature spaces
by punishing the difference of features between the instances
from different users. For every two users (u, u′) in the dataset,
we calculate the contrastive loss on their query sets. The con-
trastive loss LDAC(Qu,Qu′ |Gϕ,Hψ) of (u, u′) is formulated
by

LDAC =− 1

|Qu|

|Qu|∑

i=1

1

|Qu′ |

|Qu′ |∑

j=1

1[yi=yj ]

log
exp (sim (ei, ej) /τ)∑|Qu|

k=1 1[i̸=k]1[yi=yk] exp (sim (ei, ek) /τ)
,

(5)

where 1 is the indicator. sim(·) denotes the cosine similarity
function and τ controls the temperature. Borrowing the idea
from [12], we achieve the punishment of the domain difference
by employing a gradient reversal layer GRL(·) when calculat-
ing the latent feature ei, which is reformulated as

ei = Hψ(GRL(Gϕ(xi))). (6)

Besides, we also measure the self-sentiment prediction
loss on the query sets of u and u′ with user-specific clas-
sifiers Fθu and Fθu′ , respectively. Finally, the total loss
L(Qu,Qu′ |Fθ,Gϕ,Hψ) in this part is given by

L =L(Qu|Fθu) + L(Qu′ |Fθu′ )

+ λ · LDAC(Qu,Qu′ |Gϕ,Hψ), (7)

where λ is a hyper-parameter that balances the impact of the
domain adversarial loss. After that, the user-shared classifier
Fθ , the encoder Gϕ, and the tiny networkHψ are trained by

{θ, ψ} ← {θ, ψ} − β · ∇{θ,ψ}L(Qu,Qu′ |Fθ,Gϕ,Hψ),
ϕ← ϕ+ β · ∇ϕL(Qu,Qu′ |Fθ,Gϕ,Hψ), (8)
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Figure 3: User-wise label distribution

where β is the learning rate for this global update. Here, the
encoder Gϕ is optimized by the gradient ascent after adding the
gradient reversal layer GRL(·) [12]. By doing so, domain dif-
ferences are punished to help Gϕ learn user-shared features.

2.6. Self-sentiment Prediction

When making self-sentiment predictions for a user u, the
learned MetaDACNN conducts user-specific update on this
user’s support set Su to get the user-specific classifier Fθu by
Equation (3) and (4). Then, the self-sentiment annotation of any
instance x from u is predicted by ŷ = Fθu(Gϕ(x)).

3. Experiment
3.1. Experiment Setting

Dataset. We used Hazumi1902 and Hazumi1911 datasets.
These datasets consist of 2,337 and 2,439 exchange-level di-
alogue instances from 28 and 26 users, respectively. Each
instance contains the multimodal feature and a binary self-
sentiment annotation, where the multimodal feature includes
audio, linguistic, and video features. The number of positive
and negative instances in these datasets is highly imbalanced at
the user level. We counted the user-wise number of the pos-
itive and the negative instances for users in Hazumi1902 and
Hazumi1911 and put the result in Figure 3 to illustrate this phe-
nomenon. To alleviate the negative impact of the imbalanced
annotations, we apply the SMOTE method [17] to over-sample
the minority instances for each training user. Moreover, we per-
formed a 5-fold cross-validation to split users into training and
test users for Hazumi1902 and Hazumi1911.
Evaluation Metrics. To accurately verify the performance on
self-sentiment prediction with the highly imbalanced labels, we
employed the widely used area under the receiver operating
characteristic curve (AUC) metric. For each test user, we lo-
cally updated the trained user-shared classifier with the user’s
support set and measured the AUC score for instances in the
user’s query set with the updated user-specific classifier.
Comparison Methods. We compared our MetaDACNN with
two baselines: the support vector classifier (SVC) [18] and the
vanilla neural network (VNN), where VNN is our base model
without the meta-learning and the domain adversarial learn-
ing frameworks. We further compared MetaDACNN with the
representative meta-learning method (i.e., MAML [11]) and
the following state-of-the-art multi-domain adversarial learning
methods: DANN [12], MAN-L2 [13], MAN-NLL [13], and
MADA [19]. Besides, we added a variance of MetaDACNN,
named MetaDANN, that replaces our class-wise domain adver-
sarial contrastive learning framework with the domain adver-
sarial learning in DANN. For fair comparisons, we aligned the
backbone of the base model for all neural network methods.
Implementation Details. All NN methods were implemented
by Pytorch [20]. SVC was the model with the default hyper-
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Table 1: Comparison results on AUC are reported. Bold shows the winner.

Hazumi1902
SVC VNN DANN MAN-L2 MAN-NLL MADA MAML MetaDANN MetaDACNN (ours)

Fold-1 0.617 0.620 0.602 0.627 0.624 0.584 0.637 0.654 0.655
Fold-2 0.644 0.633 0.610 0.629 0.632 0.614 0.664 0.660 0.672
Fold-3 0.639 0.626 0.581 0.586 0.586 0.573 0.623 0.620 0.627
Fold-4 0.597 0.630 0.644 0.687 0.681 0.677 0.665 0.680 0.665
Fold-5 0.610 0.603 0.605 0.600 0.599 0.584 0.590 0.626 0.621

Average 0.622 0.622 0.608 0.626 0.624 0.606 0.636 0.648 0.648

Hazumi1911
SVC VNN DANN MAN-L2 MAN-NLL MADA MAML MetaDANN MetaDACNN (ours)

Fold-1 0.696 0.646 0.615 0.678 0.676 0.681 0.677 0.643 0.649
Fold-2 0.697 0.689 0.638 0.676 0.677 0.689 0.685 0.716 0.723
Fold-3 0.751 0.684 0.771 0.773 0.772 0.735 0.652 0.618 0.779
Fold-4 0.524 0.488 0.458 0.468 0.471 0.463 0.523 0.522 0.536
Fold-5 0.639 0.649 0.672 0.681 0.68 0.636 0.653 0.697 0.701

Average 0.661 0.631 0.631 0.655 0.655 0.641 0.638 0.639 0.677

Table 2: Result of the comparison between unimodal and multi-
modal features. The average AUC of 5-fold cross-validation is
reported. Bold shows the winner.

Dataset Feature SVC VNN MetaDACNN

Linguistic 0.631 0.605 0.646
Hazimi Audio 0.605 0.576 0.609
1902 Video 0.551 0.526 0.521

Multimodal 0.622 0.622 0.648

Linguistic 0.644 0.602 0.638
Hazimi Audio 0.654 0.654 0.694
1911 Video 0.599 0.583 0.541

Multimodal 0.661 0.631 0.677

parameters and the probability output implemented by Scikit-
learn [21]. The base model for all NN methods consists of an
encoder and a classifier, where the encoder has 2 dense layers
with the shape of [256, 64] and the classifier has 3 dense layers
with the shape of [32, 16, 2]. The tiny network of MetaDACNN
has 2 dense layers with the shape of [32, 16]. We experimen-
tally set the local learning rate α, the global learning rate β, and
the balancing factor λ to 0.00001, 0.0001, and 0.1 respectively.
We applied the mini-batch trick to accelerate our training. The
mini-batch size was 128 for all non-meta-learning methods. We
used the mini-batch trick at the user level for all meta-learning
methods and set the mini-batch size to 8 users. For each training
user, we over-sampled this user’s data and employed 5 positive
instances and 5 negative instances as the support set, where the
rest data serves as the query set.

3.2. Experiment Results

Comparison of different methods. The comparison results on
Hazumi1902 and Hazumi1911 are listed in Table 1. From this
table, we find that: (1) MetaDACNN outperforms other com-
parisons w.r.t. AUC in most cases and gains an average 1.89%
(2.42%) improvement in Hazumi1902 (Hazumi1911) compared
to the bast baseline. This is because MetaDACNN effectively
handles the individual bias issue by extracting user-shared prior

knowledge and learning user-specific classifiers from limited
training data. (2) SVC outperforms most NN-based meth-
ods, including domain adversarial methods (DANN, MAN-L2,
MAN-NLL, MADA) and the meta-learning method (MAML).
Since NN-based methods have more trainable parameters than
SVC, this result indicates that simply increasing the trainable
parameters and using complex models cannot improve classifi-
cation performance, especially with a small size of dataset and
solid individual bias in annotations. (3) MetaDACNN outper-
forms MetaDANN on Hazumi1911 and achieves a compara-
ble performance to MetaDANN on Hazumi1902. This is be-
cause Hazumi1911 contains more annotations with individual
bias (the yellow bar in Figure 1) compared to Hazumi1902, and
our class-wise domain adversarial contrastive learning frame-
work is more effective in handling individual bias. Besides,
Hazumi1902 contains more annotations with noises (the brown
bar in Figure 1) compared to Hazumi1911. The comparison
results in Hazumi1902 indicate that MetaDACNN will lose its
superiority when the annotation noise increases.
Comparison between unimodal and multimodal features.
To study the effectiveness of different methods in fusing multi-
modal features, we employed SVC, VNN, and MetaDACNN
and compared their self-sentiment prediction performances
with unimodal and multimodal input. Table 2 reports the result.
We see that the early fusing method used in our MetaDACNN
gains a few or even negative improvements from the best uni-
modal input to multimodal input. This result demonstrates the
hardness of fusing different types of features, especially with a
small dataset and strong individual biases, leaving a future work
to design better methods for multimodal feature fusion.

4. Conclusion
This work proposed a new method, named MetaDACNN, for
self-sentiment prediction. To alleviate the individual bias
and the overfitting problems, MetaDACNN combines a meta-
learning framework and a novel class-wise domain adversar-
ial contrastive framework to effectively learn user-shared prior
knowledge that can be fast updated to user-specific classifiers
with only limited data. Our experimental results on two real-
world datasets demonstrate the superiority of MetaDACNN.
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