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Abstract

Depression is one of the most common mental diseases nowa-
days, which seriously affects the health of individuals. Some
researchers have shown an association between the level of
depression and speech features in individuals, so a lot of au-
tomatic speech-based depression detection systems have been
proposed. A number of studies utilized convolutional neu-
ral network (CNN) to realize the speech depression detection.
However, most of these studies did not take into account that
different frequencies and time steps in the speech spectrum fea-
tures contribute unequally to the detection of depression. In or-
der to extract more significant and distinctive features, this pa-
per proposes an effective frequency-time attention (FTA) mod-
ule for CNN, which is based on squeeze and excitation opera-
tions and can emphasize the time steps and frequencies associ-
ated with depression. Experimental results based on the AVEC
2013 and AVEC 2014 benchmarks demonstrate the effective-
ness of our proposed method.

Index Terms: speech depression detection, frequency-time at-
tention, residual network, convolutional neural network

1. Introduction

Depression is a typical psychological disorder. and the clinical
symptoms are significant and persistent depression mood, loss
of interest, lack of vigour, etc. As the condition deteriorates,
it may even cause patients to suicide and self-mutilation [1].
Early detection and diagnosis are crucial for depression preven-
tion and treatment. Therefore, there is an urgent need to develop
an automatic depression detection method that is low-cost, effi-
cient and universal.

Several studies have shown that speech features are signif-
icantly related to the severity of depression and can be used to
distinguish depressed and non-depressed individuals [2, 3, 4].
Because of the above studies, more and more researchers im-
plemented automatic depression detection systems based on
speech signal [5, 6, 7, 8, 9, 10, 11]. In recent years, long-
short-term memory network (LSTM) and CNN have become
the most commonly used network structures for depression
detection. Ma et al. [8] proposed a DepAudioNet consist-
ing of LSTM and CNN to assess the depression level. He et
al. [9] used multi-branch CNN as feature extractor to extract
depression-related characteristics from Mel-frequency cepstral
coefficient (MFCC) and spectrogram. Niu et al. [10] pro-
posed a hybrid network composed of LSTM and CNN to ex-
tract features from short-term MFCC segments simultaneously.
EmoAudioNet [11] was a two-branch CNN model for extract-
ing deep features associated with depression from MFCC and
spectrogram respectively. Li et al. [12] took advantage of chan-
nel attention and global information embedding to improve the

feature capturing ability of CNN and LSTM respectively, thus
improving the performance of depression detection.

The spectrogram used for the speech task is different from
the image used for traditional image recognition. Both dimen-
sions of a picture represent pixel coordinates, but the subsidiary
information carried in the time and frequency dimensions of the
speech spectrogram is not similar. Some researchers consider
the above problem according to their speech task needs, such as
language identification, acoustic event detection, speech emo-
tion recognition, speech enhancement, etc. [13, 14, 15, 16, 17],
and design different time-frequency attention mechanisms to fo-
cus on the information in both dimensions of the spectrogram.
The information such as gender and speech speed characterized
by different frequencies and time steps are also very important
for depression recognition [18, 19, 20]. Therefore, paying atten-
tion to the information subsidiary in the time-frequency dimen-
sion is crucial for depression detection. However, very few de-
pression detection studies pay attention to this issue. The above
time-frequency attention methods are used for sequence models
and not applicable to 2D CNN, which have been shown to be ef-
fective for the detection of speech depression [8, 9, 10, 11, 12].
In addition, amplitude and phase spectra are obtained during the
extraction of spectrograms, and most of all research works use
only the amplitude information as input of the model. However,
the phase information is important for speech quality and intel-
ligibility [21, 22]. Hence, it may also imply depression-related
information, which needs to be verified.

Therefore, we propose an end-to-end frequency-time atten-
tion residual network (FTA-net) which contains multiple FTAs.
The FTA can help 2D CNN emphasize the contribution of dif-
ferent frequencies and time steps in speech depression detection
to improve the detection performance by making full use of the
subsidiary information in the time-frequency dimension. The
input of the model is complex spectrogram, which consists of
real and imaginary spectrogram, thus it contains not only am-
plitude but also phase information of speech signal. We make
FTA-net fit this feature so that it learns all the information in
the speech signal as much as possible to predict the level of
depression. In addition, inspired by [23, 24], we use the atten-
tive statistics pooling (ASP) to aggregate the output of FTA-net
which first focuses on depression-related frames using an at-
tention mechanism and then aggregates the frame-level features
into utterance-level representations for the final depression level
assessment.

The main contributions of this study can be summarized as
follows: i) We propose an end-to end frequency-time residual
network with attentive statistics pooling for speech depression
detection; ii) We validate the effectiveness of phase information
on speech depression detection through ablation experiments.
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Figure 1: Framework of the proposed FTA-net. BN and FC denote the batch normalization and the fully connected layer respectively.
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Figure 2: Framework of the proposed FTA. C,T and F denote the dimension of channel, time and frequency respectively. GAP and FC
represent global average pooling and fully connected layer respectively. r is reduction ratio.

2. Proposed Method

Fig. 1 illustrates the overall framework of FTA-net which con-
sists of three parts. The first is the complex spectrogram which
is the input of the model. The second is the FTA-Resnet block
which is composed by FTA and CNN. FTA can help model to
capture the depression-related information in the dimension of
frequency and time. The third part is ASP module, in which at-
tention mechanism is applied to aggregate deep frame-level fea-
tures into utterance-level features for depression severity pre-
diction. Section 2.1 and section 2.2 describe the FTA and ASP
modules in detail, respectively.

2.1. Frequency-time Attention

Squeeze-and-excitation block (SE block) is a well-known and
very effective channel attention for CNN [25]. It can automat-
ically learn the importance of each channel in the feature map
by squeeze and excitation operations. These operations empha-
size the important channels and suppress the information that
are not relevant to the task, thus improving the performance of
the model. Therefore, we borrow its idea of squeeze and excita-
tion to implement FTA. A diagram illustrating the structure of a
FTA module is shown in Fig. 2.

2.1.1. Frequncy Attention

According to Fig. 2, it firstly uses global average pooling to
squeeze the input X € RC*T*F into frequency-wise statistical
embedding z € R'*'*¥ . The f-th element of z is calculated
as follows:

—_
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where F,, means the squeeze operation. The x; is the f-th 2D
channel-time matrix of input X = [x1,X2,...,xs] which is
the output of CNN.

Then we employ the excitation operation to take advantage
of the statistical embedding aggregated in the squeeze operation
and fully capture frequency-wise dependencies. The excitation
operation consists of two fully connected layers (FC) as shown
in Equation 2:

s = Feux(z, W) = Sigmoid(W2ReLU(W1z)) (2)

where F., represents the excitation operation. The W, &
Rg *F and Wy € RFX 0 are learnable weight matrix of the
two FC layers. The parameter » means the reduction factor in
order to reduce model complexity and improve generalization
ability. s means the attention weight of every frequency.

Finally, the output X € RE*T>*F of frequency attention
(FA) can be obtained by multiplying s and X:

X =sX 3)

2.1.2. Time Attention

Here, we also use squeeze and excitation operations to achieve
time attention (TA). Since we not only want to calculate the
attention weights of the T dimension but also want to use the
channel information to fuse the results of the frequency and
time attention, we only squeeze the F dimension and use 1D
convolution to implement the excitation operation. 1D convolu-
tion of the channel dimension can be considered as the channel
attention weights to fuse the results of the frequency and time
attention. The squeeze operation is calculated as shown in the
Equation (4):

F
1
yr =Fo(Xe) = & > #() )
i=1



where X
RC XTx1

[Z1,Z2,...,%¢] is output of FA, and y €
= [y1,Y2,--.,y:] means the time and channel sta-
tistical embedding by squeezing F dimension.

The excitation operation is calculated as Equation (5).
Where W3 € R%XC and W, € RCX% are kernel matrix
of 1D CNN. r are also the reduction factor.

u="Fc(y, W) = Sigmoid( WsReLU(W3y)) (5)
Finally, the output X’ of FTA can be expressed as follow:
X' =uX (6)

2.2. Attentive Statistics Pooling

ASP first rescales the frame-level features using the atten-
tion mechanism, then calculates the mean and variance of the
rescaled features for dimensionality reduction, and realizes the
feature transformation from frame-level to utterance-level. ASP
is implemented as follows:

a; = Softmaz(tanh(Wsh;)) ()

V = Concate(u(a;x}), o(cuiz})) (8)
where a is attention weight for each frame-level feature. p and
o denote the mean and variance of features which are rescaled
by attention mechanism. Finally, the utterance-level statistical
features V' are fed to FC layer for regression.

3. Experiments and Results
3.1. Experimental Corpus

The AVEC2013 benchmark has 84 subjects, ranging in age from
18 to 63 years old, with an average age of 31. There are 150
video recordings in benchmark. The duration of the recordings
varies from 20 to 50 minutes, and 25 minutes on average. The
benchmark is divided into 3 parts, training, validation and test
set, of which each contains 50 video samples.

The AVEC2014 is a subset of AVEC2013 and contains two
tasks, NorthWind and FreeForm. Each task contains 150 video
samples, and the training, validation and test sets include 50
samples respectively. The duration of videos in the NorthWind
is distributed from 31 to 89 seconds. and that of the videos
in FreeForm is between 6 to 248 seconds. In the experiments
of this paper, we combine the samples of both tasks, in other
words, the training, validation and test sets each contain 100
samples. Both benchmarks are labeled with scores from the
Beck Depression Inventory-II (BDI-II), a standard depression
self-report inventory [26].

3.2. Experimental Setup

First of all, we transcribe the video files in those benchmarks
into audio files and resample the audio to 8 kHz. Due to the
sample size limitation of the benchmarks, we use a data aug-
mentation approach using a sliding window with a size of 3
seconds and 50% overlap to divide the raw audio into multiple
speech segments. For the STFT, the hanning window is 50 ms
with a shift of 12.5 ms, and the fast Fourier transform (FFT)
points are 512. Before the complex spectrogram is fed into
FTA-Resnet block, it first goes into a 2D CNN with a kernel
size of 9 x 3 and a stride of (3, 1). The number of convolution
kernels in the four FTA-Resnet blocks is 64, 128, 256, and 512,
respectively, and the size of the kernel is 3. The stride of first
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Table 1: Performance comparison of different attention and in-
put on the test set of AVEC 2013 and AVEC 2014.

Method AVEC 2013 AVEC 2014
RMSE MAE RMSE MAE
Resnet 10.39 8.22 10.35 8.06
F-net 10.26 8.16 10.27 791
T-net/o 10.30 8.07 10.29 7.88
T-net 10.03 7.67 9.96 7.65
SE-net 9.77 7.52 9.81 7.53
TFA-net 10.13 7.55 10.12 7.60
FTA-net-R 9.85 7.69 9.91 7.65
FTA-net 9.58 7.42 9.60 7.31

CNN in the last three blocks is 2. The rest of the parameters in
FTA-net are as same as Resnet18 [27]. The number of neurons
in the FC layer is 256. All parameters in the model are about
15M. The GPU used is RTX3090, the optimizer is Adam, the
learning rate is 0.002, and the size of batch is 64. During train-
ing, the training set needs class re-balancing. In the end, the
average of prediction results of all speech segments of the sub-
ject is regarded as final depression score. The results of AVEC
2014 are obtained by fine-tuning the model from AVEC 2013.
The root mean square error (RMSE) and the mean absolute er-
ror (MAE) are used to evaluate the performance of our proposed
method.

3.3. Results and Discussion
3.3.1. Ablation tests and analysis

Table 1 shows the results of the ablation experiments on AVEC
2013 and AVEC 2014 with different attention mechanisms to
demonstrate the effectiveness of the proposed method. Resnet
indicates that the CNN blocks do not use any attention. T-net,
F-net denote Resnet with TA and FA respectively. T-net/o indi-
cates the same structure as F-net, without channel information.
TFA-net means that TA is used first in Resnet block, and then
FA. FTA-net-R represents that only the real spectrogram is used
as input to FTA-net.

As shown in Table 1, we can observe that proposed FTA-
net consisitently achieves the best performance on both bench-
marks. Moreover, T-net and F-net outperform Resnet in both
RMSE and MAE, indicating that subsidiary information in the
time and frequency dimensions benefit to speech depression de-
tection and can exploit the attention mechanism to emphasize
the depression-related time steps and frequencies. F-net and
T-net/o have similar performance but are worse than T-net. Af-
ter analysis, this is because the channel information is included
in the process of squeeze and excitation in TA, which also ex-
plains why FTA-net performs better than TFA-net. In addition,
we also compare the effects of real and complex spectrogram
as model inputs on depression detection, and the experimen-
tal results show that the performance of complex spectrogram
outperform real spectrogram, which demonstrates that not only
the amplitude information but also phase information plays an
important part in speech depression detection.

To better demonstrate the contribution of time and fre-
quency attention, we plot the 40th channel in the output of the
third attention for the different models, as shown in Fig. 3. The
brighter the bar, the more important it is for depression detec-
tion. As we can see from the Fig. 3, the different time steps
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Figure 3: Attention heatmap of subjects with different depres-
sion levels drawn from the time and frequency attention mod-
ules. 347 2, 2203, 226_2 are the numbers of subjects with dif-
ferent levels of depression. The column of subplot is frequency
and the row of subplot is time step.

and frequencies do contribute differently. The three attention
methods share a common focus on time steps and frequencies
in red color, demonstrating that these steps and frequencies are
particularly important for depression detection. The remaining
differences in the figure determine their performance. The fea-
ture maps of the different depression levels in the FTA-net are
significantly discriminatory, whereas the feature maps of mod-
erate and severe depression in the T-net and the F-net have high
similarity, indicating that they are difficult to distinguish mod-
erate and severe depressed subjects.

For a more precise illustration, we calculate the Euclidean
distance between the above feature maps. From the direction
of the rows of Table 2, the maximum Euclidean distance is
obtained for each group, indicating that the FTA can help the
model to distinguish subjects with different depression levels.
However, the Euclidean distances of H-M and H-S for T-net
and F-net are similar, suggesting that they can not distinguish
subjects with moderate and severe depression. The same is ev-
idenced by their M-S values. The above analysis is consistent
with the results in Table 1, which further suggests the effective-
ness of FTA-net.

Table 2: Euclidean distances between feature maps for differ-
ent depression levels in different models. H, M and S denote
healthy, moderate and severe depression subject groups, respec-
tively.

Methods H-M H-S M-S
FTA-net 4196 55.89 26.19
T-net 1793 1836 7.66
F-net 3.00 3.29 1.04

3.3.2. Performance comparison with previous methods

In this subsection, we highlight the effectiveness of our pro-
posed method by comparing it with key results from previous
studies on AVEC 2013 and AVEC 2014 benchmarks. The com-
parison results are shown in Table 3 and Table 4. It can be ob-
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Table 3: Performance comparison between the proposed model
and other models on the test set of AVEC 2013 benchmark.

Methods RMSE MAE

AVEC 2013 Audio Baseline [5] 12.56  10.03
PLS regression [7] 10.25 8.40
DCNN [9] 9.99 8.19
CNN-LSTM-SVR [10] 9.66 8.02
SAN-CNN-SVR [28] 9.65 7.38
GIE-LSTM-CNN-SVR [12] 9.63 7.51
FTA-net (ours) 9.58 7.42

Table 4: Performance comparison between the proposed model
and other models on the test set of AVEC 2014 benchmark.

Methods RMSE MAE

AVEC 2014 Audio Baseline [6] 12.56  10.03
Fisher Vector Encodeing [29] 10.25 8.40
DCNN [9] 9.99 8.19
CNN-LSTM-SVR [10] 9.66 8.02
SAN-CNN-SVR [28] 9.57 7.97
GIE-LSTM-CNN-SVR [12] 9.40 7.37
FTA-net (ours) 9.60 7.31

served that the best RMSE (9.58) on the AVEC 2013 test set and
the best MAE (7.31) on AVEC 2014 test set were obtained by
our FTA-net. These results prove the effectiveness of our pro-
posed method. In addition, FTA-net is an end-to-end approach
that is more convenient for practical application than the above
studies [10, 12, 28] with better performance.

4. Conclusions

In this work, considering that different time steps and frequen-
cies on the spectrogram contribute unequally to the speech de-
pression detection and that some subsidiary information in both
dimensions of the spectrogram contributes to speech depression
detection, we proposed FTA-net with input of complex spec-
trogram that can focus on both time and frequency domains to
improve the performance of depression detection. In this paper,
we used a large number of ablation experiments to verify the ef-
fectiveness of our proposed method, and the results of ablation
experiments on AVEC 2013 and AVEC 2014 benchmarks sug-
gest that our proposed FTA module can effectively focus on the
depression-related time steps and frequencies in the features. In
addition, we also verified that phase information is helpful for
depression detection. In future work, considering the long-term
context-dependent nature of depression detection, we will ex-
plore the variants of FTA that can be used in temporal networks
to implement speech depression detection.
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