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Abstract
Slot filling is an essential component in task-oriented dialogue
systems. Due to the scarcity of annotated data, zero-shot slot
filling has been studied to transfer knowledge from source do-
mains to a target domain. Previous methods adopt slot de-
scriptions or questions as slot semantics, where they utilize
slot descriptions to calculate similarity scores, or reformat the
task as a question-answering problem. However, these meth-
ods do not fully exploit the token-level dependency between
the slot semantics and utterances. In this study, we propose
a Transformer-based Slot semantics fusion method for Slot
Filling (TSSF). We first adopt two encoders with shared weights
to obtain the representations of utterances and slot semantics.
Then, we design a transformer-based fusion module for effec-
tively integrating slot semantics into utterances. Experimental
results on the public benchmark SNIPS show that our model
significantly outperforms the state-of-the-art model by 6.09%
in terms of slot F1.
Index Terms: dialogue system, zero-shot slot filling,
transformer-based slot semantics fusion

1. Introduction
In task-oriented dialogue systems, spoken language understand-
ing (SLU) is an important component to capture the semantics
of user utterances [1]. One pillar of SLU is the slot filling task,
which needs to extract the slot entities in user utterances accord-
ing to a set of predefined slots [2]. Fig. 1 shows an example of
slot filling, given the utterance “what is the weather in koontz
lake” in the “GetWeather” domain, models need to find the slot
entity “koontz lake” corresponding to the slot type “city”. Con-
ventional methods take slot filling as a sequence labeling prob-
lem (i.e., a token-level classification task), and such fully su-
pervised learning methods require a large amount of annotated
data [3, 4, 5, 6, 7]. However, the construction of such data in real
life is labor-intensive and time-consuming. In addition, a dia-
logue system usually needs to be quickly developed and applied
to a new domain [8], but this requirement is hard to be satis-
fied in the data scarcity scenario. One solution is to study zero-
shot cross-domain slot filling, which aims to transfer knowledge
from several source domains to a target domain [9, 10, 11].

In the zero-shot cross-domain slot filling task, the target do-
main contains two kinds of slots. The shared slots in both target
and source domains are seen slots, and the slots that only ap-
pear in the target domain are unseen slots [12]. A challenge in
the zero-shot slot filling is the prediction of the unseen slots,
which results in a limited performance of conventional fully-
supervised methods. And due to the strong bias between the

* denotes the corresponding author.

Figure 1: An example of the slot filling task in the domain
“GetWeather”. In this example, models need to find the slot
entity “koontz lake” corresponding to the slot type “city”.

source domains and the target domain, some slot entities have
different semantics in the source and the target domain [13].
For example, in the SNIPS dataset [14], the slot entity “ob-
ject type” represents the type of book in the “RateBook” do-
main, but in the “FindScreenEvent” domain it represents the
movie schedule. Previous studies introduce slot semantic infor-
mation as label knowledge to avoid bias and predict both the
seen and the unseen slots. These studies can be classified into
two categories. On one hand, early studies predict the seen and
the unseen slots by metric learning, which calculate the sim-
ilarity scores between candidate slot entities and slot descrip-
tions [15, 16, 17, 18]. In addition, slot examples are also added
to slot descriptions to enhance the slot semantics representa-
tions [19]. However, these metric-based methods predict the
slot label by calculating the similarity between the candidate
slot entity and the sentence embedding of the slot descriptions,
which does not consider the token-level dependency between
the utterances and slot descriptions. And the short slot descrip-
tions do not incorporate enough slot semantics [20]. On the
other hand, later studies reformulate the zero-shot slot filling as
a questioning & answering (QA) task [20, 21], which generates
a question as a kind of slot semantics for each predefined slot
type and then extract the answer spans using a QA model. These
QA approaches simply integrate slot semantics into utterances
by direct concatenation operation, yet making the model unable
to fully focus on the question information, and unable to learn
the dependency between the tokens in an utterance well.

To address the above problems, we propose a Transformer-
based Slot semantics fusion method for Slot Filling (TSSF).
Firstly, we adopt the siamese network architecture [22], where
an utterance encoder and a slot semantics encoder are adopted
to get the representations of utterances and slot semantics, re-
spectively. The two encoders share weights for parameter and
computation efficiency. Secondly, we propose a slot semantics
fusion module by using stacked transformer encoder layers to
integrate the slot semantics into the token-level utterance rep-
resentations. Due to explicit fusion by stacked transformer en-
coders, we can obtain the utterance representations enhanced
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by slot semantics. Finally, two classifiers are used to predict the
span boundary for each slot.

2. Transformer-based Slot Semantics
Fusion for Slot Filling

The architecture of our proposed TSSF is depicted in Fig. 2.
Firstly, TSSF uses an utterance encoder and a slot semantics
encoder to obtain representations of utterances and slot seman-
tics respectively. Note that the two encoders use shared weights.
Then the stacked transformer encoders are used to integrate slot
semantics into utterance representations. Finally, TSSF predicts
the boundary of each slot type based on the slot semantics en-
hanced utterance representations. The details are shown in the
following subsections.

Table 1: Examples of slot types and their slot semantics, each
slot type is converted to a natural language question as its slot
semantics.

slot type slot semantics

playlist owner who is the owner?
object select which object to select?
best rating how many points in total?
num book people how many people for booking?

2.1. Task Formulation

Given a user utterance X = {x1, x2, ..., xn} with n words and
a set of predefined slot types L in domain D. The slot fill-
ing task is to extract a set of (slot type, span) pairs (yi, ai),
where yi comes from the slot type set L, and ai = (j, k), 1 ≤
j ≤ k ≤ n is a span in utterance. There is a natural language
description for each slot type, i.e., slot semantics, denoted as
S = {si1, si2, ..., sim}ti , where m is the length of slot seman-
tics and t is the number of slot types. In this work, we adopt
questions constructed in previous work [20] as the slot seman-
tics, and Table 1 shows some examples. In the zero-shot cross-
domain slot filling task, the model is trained with data in several
source domains and evaluated with data in a target domain.

2.2. Utterance Encoder and Slot Semantics Encoder

We adopt the siamese network architecture [22] which con-
tains the shared weights encoder to obtain the utterance and the
slot semantics representations respectively. By encoding sep-
arately, we can make the encoder focus on the semantics of a
sentence rather than other syntactic parts [23]. It can also im-
prove computational efficiency by avoiding too many combi-
nations of the utterances and the slot semantics [24, 25]. And
due to the powerful representation capacity of the pre-trained
language model [26, 27], which has been successfully applied
on NER and slot filling task [18, 28], we use a shared weights
BERT [26] as the utterance encoder and the slot semantics en-
coder. The operation can be denoted as follow:

hX = BERT([x1, x2, ..., xn]), (1)

hSi = BERT([si1, si2, ..., sim]), (2)

where hX and hSi are the output representations of utterance
{x1, x2, ..., xn} and the ith slot semantics {si1, si2, ..., sim}i,
respectively. h ∈ Rn×d, hS ∈ Rt×m×d, where t is the size of
slot set and d is the dimension of the output representations.

Utterance Encoder Slot Semantics Encoder

...

... ... ...

repeat & concat

Start Classifier End Classifier

...

...

... ...

... ...

... ... ... ... ... ... ... ...

Multi-Head Attention

Feed Forward

Add&Norm

Q K V

Add&Norm

Slot Semantics 
Fusion Module

...

share weights

...

Figure 2: Model structure of the proposed TSSF model. Firstly,
the utterance and the slot semantics are encoded separately.
Then the transformer-based slot semantics module is used to
integrate the slot semantics into the utterance representation.
Finally, the boundary of each slot is predicted by the start and
the end classifier.

2.3. Slot Semantics Fusion Module

Transformer-based slot semantics fusion module aims to inte-
grate slot semantics into the utterance representation. Given
the utterance representation hX and slot semantics represen-
tations hS from the output of utterance encoder and slot se-
mantics encoder, we firstly repeat hX for t times to get hX =
{hX1 , hX2 , ..., hXn}ti=1, then concatenate the utterance repre-
sentation with each slot semantics representations and get:

h = {hX1 , hX2 , ..., hXn , hSi1 , hSi2 , ..., hSim}ti=1, (3)

where h ∈ Rt×(n+m)×d, then we take h as the input to the
stacked transformer encoder layers [29], with the multi-head
attention in transformer, slot semantics can be integrated into
utterance representations explicitly. The attention mechanism
can be formulated as follow:

attention(Q,K, V ) = softmax

(
QKT

√
d

)
V, (4)

and the output of the multi-head attention is calculated as:

h′
i = MultiHead(hi), (5)

h′
i = Concat (head1, . . . , headk)W

O, (6)

headi = attention
(
hiW

Q
i , hiW

K
i , hiW

V
i

)
, (7)

where WQ
i ,WK

i ,WV
i ∈ Rd× d

k and WO ∈ Rd×d are
trainable parameters during training step, k is the number of
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Table 2: Experimental results (slot F1) on the SNIPS dataset. Scores in each row represent the performance of the seven domains
and the average slot F1-score. ATP, BR, GW, PM, RB, SCW, FSE denote the domain AddToPlaylist, BookRestaurant, GetWeather,
PlayMusic, RateBook, SearchCreativeWork and FindScreeningEvent respectively. Bold numbers indicate the best performance.

Model↓ Domain→ ATP BR GW PM RB SCW FSE Average F1

CT [15] 38.82 27.54 46.45 32.86 14.54 39.79 13.83 30.55
RZT [19] 42.77 30.68 50.28 33.12 16.43 44.45 12.25 32.85
Coach [12] 50.90 34.01 50.47 32.01 22.06 46.65 25.63 37.39
QASF [20] 57.57 48.75 61.27 38.54 36.51 60.82 27.72 47.31
SLMRC [21] 63.21 60.11 65.23 50.16 32.78 55.17 30.67 51.05

TSSF (ours) 62.58 44.01 71.92 51.77 39.34 78.74 51.59 57.14

parallel heads. After multi-head attention, a feedforward neural
network and residual connections are applied to get the output
of the transformer encoder h′, where h′ ∈ Rt×(n+m)×d has
the same dimension as the input feature h.

After N -layer stacked transformer encoders, we discard the
slot semantics part and get the enhanced utterance representa-
tion h′ = {h′

i1, h
′
i2, ..., h

′
in}ti=1 for each of the t slots.

2.4. Slot Entity Prediction

Given the slot semantics enhanced representation h′ =
{h′

i1, h
′
i2, ..., h

′
in}ti=1for each slot, we use two linear classifiers

to predict the boundary of every slot, i.e., predict the start posi-
tion and end position for each slot. The process can be denoted
as follow:

P start
i = σ(h′

iWstart + bstart), (8)

P end
i = σ(h′

iWend + bend), (9)

where Wstart ∈ Rd×1 and bstart ∈ R1 are model parameters
of the start position classifier, Wend ∈ Rd×1 and bend ∈ R1

are parameters of the end position classifier, σ is the sigmoid
function, and P start

i ∈ Rn×1 reflects the probability of each
word in the utterance becoming the start position of ith slot,
P end
i ∈ Rn×1 reflects the probability that each word in the

utterance becoming the end position of the ith slot.

2.5. Train and Test

In training stage, we minimize the binary cross-entropy loss be-
tween the predicted start probability P start and ground truth
start position Y start for each of the t slots, this loss function
can be denoted as:

Lstart =
t∑

i=1

n∑

j=1

BCE(P start
ij , Y start

ij ), (10)

where BCE is the binary cross-entropy loss function, likewise,
we can get the loss function of end position predictions:

Lend =
t∑

i=1

n∑

j=1

BCE(P end
ij , Y end

ij ), (11)

we sum the above two functions as our final loss:

L = Lstart + Lend. (12)

Note that if a slot type doesn’t exist in the utterance, we
map the ground truth start and end position to [cls] token.

In testing stage, we predict a start, end position (j, k) for the
ith slot with the maximum P start

ij +P end
ik probability, and (j, k)

should also satisfy P start
ij > P start

i0 and P end
ij > P end

i0 , where

the P start
i0 and P end

i0 are the start probability and end proba-
bility of the [cls] token, respectively. And if there are overlaps
among the predictions on slots, we take the one with a higher
probability.

3. Experiments
3.1. Dataset

We evaluate our model on SNIPS [14], a public spoken
language understanding dataset that contains 39 slot types
across seven domains (intents) – “AddToPlaylist” (ATP),
“BookRestaurant” (BR), “GetWeather” (GW), “PlayMu-
sic” (PM), “RateBook” (RB), “SearchCreativeWork” (SCW),
“FindScreeningEvent” (FSE). Each domain contains around
2000 samples. We use the same setting as previous work [12,
21]: each time we choose one domain as the target domain and
the other six domains as the source domains, and the first 500
samples in the target domain are used as the validation set and
the remainder is used as the test set. We train the model on the
source domains and evaluate it on the target domain.

3.2. Baselines

We compare our approach with a number of representative base-
lines: CT [15] first introduces slot descriptions to improve the
performance on unseen slots. RZT [19] adds several slot ex-
ample values based on CT to improve the robustness of zero-
shot slot filling. Coach [12] designs a two-step framework and
predicts the specific slot types by metric-based computation be-
tween slot spans and slot descriptions. QASF [20] reformulates
the slot filling task as a QA problem and adopts a BERT-based
QA model to extract slot spans from utterances. SLMRC [21]
is the current state-of-the-art method for zero-shot slot filling
task, which addresses slot filling as a machine reading com-
prehension (MRC) problem. Additionally, it uses MRC dataset
SQuAD [30] for data augmentation. For a fair comparison, we
report its results without the additional data.

3.3. Implementation Details

We use “bert-base-uncased1” model for our utterance encoder
and slot semantics encoder, followed by QASF and SLMRC.
We set the number of transformer encoder layers N to 5, the
hidden size to 768, and the number of multi-heads to 12. The
model is fine-tuned for 10 epochs with the early stop patience
of 5. The batch size is set to 8. We also set a dropout rate of
0.1 [31] to avoid over-fitting. The maximum length of utterance
and slot semantics is 64 and 32 respectively. We train our model

1https://huggingface.co/bert-base-uncased
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Table 3: Average slot F1-scores for seen and unseen parts.

Model↓ Part→ seen unseen

CT [15] 44.18 27.10
RZT [19] 47.15 28.28
Coach [12] 51.93 34.09
QASF [20] 56.23 41.73
SLMRC [21] 64.41 42.76

TSSF (ours) 69.98 43.16
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Figure 3: Average slot F1-scores of the different number of
transformer layers in transformer-based slot semantics fusion
module.

using Adam [32] optimizer with a learning rate of 1e-5 on a sin-
gle RTX 2080Ti GPU. We use slot-F1 as the evaluation metric
followed by [12, 20], and we fine-tune all hyper-parameters on
the validation set then use the best checkpoint to test our model.

3.4. Experimental Results

Quantitative Analysis: We report the results of baselines and
our approach in Table 2, which contains the F1-scores of each
domain and the average F1-scores of seven domains. It can be
seen that our TSSF model significantly outperforms the state-
of-the-art model SLMRC in five of seven domains, and the
average-F1 of seven domains is 6.09% higher than SLMRC, this
demonstrates that our model can better utilize the slot semantics
through the explicit fusion in the stacked transformer encoders.

Compared to SLMRC, our model has inferior performance
in the “BookRestaurant” domain, we conjecture that this is be-
cause there are 14 slot types in the “BookRestaurant” domain,
but only 2∼9 slot types in the other six domains, which causes
inconsistency between training and testing for our model.
Analysis on Seen and Unseen Slots: To further analyze the ef-
fectiveness of our method on seen and unseen slots in the target
domain, we split the test set for each domain into “seen” and
“unseen” parts and test the model on both parts. An utterance
is categorized into the “unseen” part as long as there is an un-
seen slot (i.e. the slot does not exist in the source domains).
Otherwise, it is categorized into the “seen” part.

The results for the seen and unseen parts are shown in Ta-
ble 3. We can observe that our model has a better performance
on both seen and unseen parts. And for the seen part, our model
significantly outperforms the best baseline SLMRC by 5.57%.
It demonstrates that our model can better learn the different
semantics of the same seen slot in different domains, such as
the different semantics of the slot entity “object name” in the

Table 4: Ablation study of different fusion strategies. Concat de-
notes concatenation, DPA denotes dot-product attention, MHA
denotes multi-head attention, and TSSF denotes our proposed
transformer-based slot semantics module.

Domain↓ Fusion→ Concat DPA MHA TSSF

AddToPlaylist 12.66 60.23 58.71 62.58
BookRestaurant 1.21 38.72 38.17 44.01
GetWeather 5.76 64.45 62.60 71.92
PlayMusic 5.63 46.02 45.93 51.77
RateBook 3.38 33.18 30.32 39.34
SearchCreativeWork 41.28 69.36 80.43 78.74
FindScreeningEvent 10.22 34.48 35.46 51.59

Average F1 11.45 49.49 50.23 57.14

“RataBook” domain and the “SearchCreativeWork” domain.
Analysis on the Number of Transformer Layers: Fig. 3
shows the performance of the different number of transformer
encoder layers. As the number of layers increases from 1 to
5, we can observe that our model has a better performance
from 50.95% to 57.14%, which indicates that the deeper stacked
transformers have a better capacity to capture slot semantics.
When the number of layers reaches 6, the performance de-
creases slightly, which we think is caused by the over-fitting
issue due to too many introduced parameters.

3.5. Ablation Study

To further explore the impact of the transformer-based slot se-
mantic fusion module, we compare our method with three other
fusion strategies: 1) Concat: like RZT [19], we concatenate the
sentence-level representations of slot semantics with the token-
level utterance representations. 2) DPA (dot-product atten-
tion) [29]: we adopt the dot-product attention between token-
level representations of slot semantics and utterances. 3) MHA
(multi-head attention) [29]: we use the token-level utterances as
the query vector, and the token-level slot semantics representa-
tions as the key and the value vector without the concatenation
operation. The results are shown in Table 4, where we can ob-
serve that the Concat method has a poor performance, due to
the lack of token-level interactions between utterances and slot
semantics. And our transformer-based slot semantics fusion
method outperforms DPA and MHA by 7.65% and 6.91% re-
spectively, which indicates that through the stacked transformer
encoders, our model can better integrate the slot semantics into
the utterance representations.

4. Conclusions and Future Work
In this work, we propose a novel slot filling model with
transformer-based slot semantics fusion, where the stacked
transformers can integrate slot semantics into utterance repre-
sentations effectively. Experimental results show that our model
significantly outperforms the previous state-of-the-art method.
In the future, we would like to build a joint model for slot filling
and intent detection in resource-scarce scenarios.
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